• 正在加载中...
  • 光电探测器

    光电探测器是指由辐射引起被照射材料电导率改变的一种物理现象。光电探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像模糊,连续薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。其他材料可采取镶嵌靶面的方法,整个靶面由约10万个单独探测器组成。

    编辑摘要

    目录

    一、光电探测器/光电探测器 编辑

    1、分类

    光电探测器能把光信号转换为电信号。根据器件对 辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是 热探测器

    2、工作原理


    探测器原理图
    光电探测器的工作原理是基于 光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的 波长无选择性。
    光电子发射器件:光电管与 光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放大器件。尤其是光电倍增管具有很高的电流增益,特别适于探测微弱光信号;但它结构复杂,工作电压高,体积较大。
    光电倍增管一般用于测弱辐射而且响应速度要求较高的场合,如 人造卫星激光测距仪、光雷达等。
    光电导器件:利用具有光电导效应的半导体材料做成的光电探测器称为光电导器件,通常叫做 光敏电阻。在可见光波段和大气透过的几个窗口,即近红外、中红外和远红外波段,都有适用的光敏电阻。光敏电阻被广泛地用于光电自动探测系统、光电跟踪系统、导弹制导、 红外光谱系统等。
    硫化镉CdS和硒化镉CdSe光敏电阻是可见光波段用得最多的两种光敏电阻;硫化铅 PbS光敏电阻是工作于大气第一个红外透过窗口的主要光敏电阻,室温工作的PbS光敏电阻响应波长范围1.0~3.5微米,峰值响应波长2.4 微米左右;锑化铟InSb光敏电阻主要用于探测大气第二个红外透过窗口,其响应波长3~5μm;碲镉汞器件的光谱响应在8~14 微米,其峰值波长为10.6微米,与CO2激光器的激光波长相匹配,用于探测大气第三个窗口(8~14微米)°

    二、光电探测器的应用选择和主要应用/光电探测器 编辑

    1、光电探测器的应用选择


    探测器结构
    光电探测器件的应用选择,实际上是应用时的一些事项或要点。在很多要求不太严格的应用中,可采用任何一种光电探测器件。不过在某些情况下,选用某种器件会更合适些。例如,当需要比较大的光敏面积时,可选用真空光电管,因其光谱响应范围比较宽,故真空光电管普遍应用于 分光光度计中。当被测辐射信号微弱、要求响应速度较高时,采用光电倍增管最合适,因为其放大倍数可达to'以上,这样高的增益可使其信号超过输出和放大线路内的噪声分量,使得对探测器的限制只剩下光阴极电流中的统计变化。因此,在 天文学光谱学激光测距和闪烁计数等方面,光电倍增管得到广泛应用。
    目前,固体光电探测器用途非常广。CdS 光敏电阻因其成本低而在光亮度控制(如照相自动曝光)中得到采用;光电池是固体光电器件中具有最大光敏面积的器件,它除用做探测器件外,还可作太阳能变换器;硅光电二极管体积小、响应快、可靠性高,而且在可见光与近红外波段内有较高的量子效率,困而在各种工业控制中获得应用。硅雪崩管由于增益高、响应快、噪声小,因而在激光测距与光纤通信中普遍采用。
    为了提高传输效率并且无畸变地变换光电信号,光电探测器不仅要和被测信号、 光学系统相匹配,而且要和后续的电子线路在特性和工作参数上相匹配,使每个相互连接的器件都处于最佳的工作状态。现将光电探测器件的应用选择要点归纳如下:
    光电探测器必须和辐射信号源及光学系统在光谱特性上相匹配。如果测量波长是紫外波段,则选用光电倍增管或专门的紫外光电半导体器件;如果信号是 可见光,则可选用 光电倍增管、光敏电阻和Si光电器件;如果是红外信号,则选用光敏电阻,近红外选用Si光电器件或光电倍增管;
    光电探测器的光电转换特性必须和入射辐射能量相匹配。其中首先要注意器件的感光面要和照射光匹配好,因光源必须照到器件的有效位置,如光照位置发生变化,则光电灵敏度将发生变化。如光敏电阻是一个可变电阻,有光照的部分电阻就降低,必须使光线照在两电极间的全部电阻体上,以便有效地利用全部感光面。 光电二极管光电三极管的感光面只是结附近的一个极小的面积,故一般把透镜作为光的入射窗,要把透镜的焦点与感光的灵敏点对准。一股要使入射通量的变化中心处于检测器件光电特性的线性范围内,以确保获得良好的线性输出。对微弱的光信号,器件必须有合适的灵敏度,以确保一定的信噪比和输出足够强的电信号;
    光电探测器必须和光信号的调制形式、信号频率及波形相匹配,以保证得到没有频率失真的输出波形和良好的时间响应。这种情况主要是选择响应时间短或上限频率高的器件,但在电路上也要注意匹配好动态参数;
    光电探测器必须和输入电路在电特性上良好地匹配,以保证有足够大的转换系数、线性范围、信噪比及快速的动态响应等;
    为使器件能长期稳定可靠地工作,必须注意选择好器件的规格和使用的环境条件,并且要使器件在额定条件下使用;

    2、光电探测器的主要应用


    photoconductive detector 利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像模糊,连续薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。其他材料可采取镶嵌靶面的方法,整个靶面由约10万个单独探测器组成。
    1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。
    光子-模型图光子-模型图[1]
    第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的 硫化镉硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。60年代初,中远红外波段灵敏的Ge、Si掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(锗掺金)和Ge:Hg光电导探测器。60年代末以后,HgCdTe、PbSnTe等可变禁带宽度的三元系材料的研究取得进展。 工作原理和特性 光电导效应是内光电效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为 λc=hc/Eg=1.24/Eg (μm) 式中 c为光速。本征光电导材料的长波限受禁带宽度的限制。
    电子-模型图电子-模型图[2]

    在60年代初以前还没有研制出适用的窄禁带宽度的半导体材料,因而人们利用非本征光电导效应。Ge、Si等材料的禁带中存在各种深度的杂质能级,照射的光子能量只要等于或大于杂质能级的离化能,就能够产生光生自由电子或自由空穴。非本征光电导体的响应长波限λ由下式求得 λc=1.24/Ei 式中Ei代表杂质能级的离化能。到60年代中后期,Hg1-xCdxTe、PbxSn1-xTe、PbxSn1-xSe等三元系半导体材料研制成功,并进入实用阶段。它们的禁带宽度随组分x值而改变,例如x=0.2的HG0.8Cd0.2Te材料,可以制成响应波长为 8~14微米大气窗口的红外探测器。它与工作在同样波段的Ge:Hg探测器相比有如下优点:
    工作温度高(高于77K),使用方便,而Ge:Hg工作温度为38K;本征吸收系数大,样品尺寸小;易于制造多元器件。表1和表2分别列出部分半导体材料的Eg、Ei和λc值。
    通常,凡禁带宽度或杂质离化能合适的半导体材料都具有光电效应。但是制造实用性器件还要考虑性能、工艺、价格等因素。常用的光电导探测器材料在射线和可见光波段有:CdS、CdSe、CdTe、Si、Ge等;在近红外波段有:PbS、InGaAs、PbSe、InSb、Hg0.75Cd0.25Te等;在长于8微米波段有:Hg1-xCdxTe、PbxSn1-x、Te、Si掺杂、Ge掺杂等;CdS、CdSe、PbS等材料可以由多晶薄膜形式制成光电导探测器。 可见光波段的光电导探测器 CdS、CdSe、CdTe 的响应波段都在可见光或近红外区域,通常称为光敏电阻。它们具有很宽的禁带宽度(远大于1电子伏),可以在室温下工作,因此器件结构比较简单,一般采用半密封式的胶木外壳,前面加一透光窗口,后面引出两根管脚作为电极。高温、高湿环境应用的光电导探测器可采用金属全密封型结构,玻璃窗口与可伐金属外壳熔封。
    器件灵敏度用一定偏压下每流明辐照所产生的光电流的大小来表示。例如一种CdS光敏电阻,当偏压为70伏时,暗电流为10-6~10-8安,光照灵敏度为3~10安/流明。CdSe光敏电阻的灵敏度一般比 CdS高。光敏电阻另一个重要参数是时间常数 τ,它表示器件对光照反应速度的大小。光照突然去除以后,光电流下降到最大值的 1/e(约为37%)所需的时间为时间常数 τ。也有按光电流下降到最大值的10%计算τ的;各种光敏电阻的时间常数差别很大。CdS的时间常数比较大(毫秒量级)。 红外波段的光电导探测器 PbS、Hg1-xCdxTe 的常用响应波段在 1~3微米、3~5微米、8~14微米三个大气透过窗口。由于它们的禁带宽度很窄,因此在室温下,热激发足以使导带中有大量的自由载流子,这就大大降低了对辐射的灵敏度。
    响应波长越长的光,电导体这种情况越显著,其中1~3微米波段的探测器可以在室温工作(灵敏度略有下降)。3~5微米波段的探测器分三种情况:
    在室温下工作,但灵敏度大大下降,探测度一般只有1~7×108厘米·瓦-1·赫;热电致冷温度下工作(约-60℃),探测度约为109厘米·瓦-1·赫;77K或更低温度下工作,探测度可达1010厘米·瓦-1·赫以上。8~14微米波段的探测器必须在低温下工作,因此光电导体要保持在真空杜瓦瓶中,冷却方式有灌注液氮和用微型制冷器两种。
    红外探测器的时间常数比光敏电阻小得多,PbS探测器的时间常数一般为50~500微秒,HgCdTe探测器的时间常数在10-6~10-8秒量级。红外探测器有时要探测非常微弱的辐射信号,例如10-14 瓦;输出的电信号也非常小,因此要有专门的前置放大器。

    三、各种光电探测器的性能比较和功能提升带/光电探测器 编辑

    1、各种光电探测器的性能比较


    在动态特性(即频率响应与时间响应)方面,以光电倍增管和光电 二极管(尤其是PIN管与雪崩管)为最好;在光电特性(即线性)方面,以光电倍增管、 光电二极管和光 电池为最好;在灵敏度方面,以光电倍增管、雪崩光电二极管、光敏 电阻和光电 三极管为最好。值得指出的是, 灵敏度高不一定就是输出电流大,而输出电流大的器件有大面积光电池、 光敏电阻、雪崩光电二极管和光电三极管;外加偏置电压最低的是光电二极管、光电三极管,光电池不需外加偏置;在暗电流方面,光电倍增管和光电二极管最小,光电池不加偏置时无暗电流,加反向偏置后暗电流也比光电倍增管和光电二极管大;长期工作的稳定性方面,以光电二极管、光电池为最好,其次是光电倍增管与光电三极管;在光谱响应方面,以光电倍增管和CdSe光敏电阻为最宽,但光电倍增管响应偏紫外方向,而光敏电阻响应偏红外方向。

    2、光电探测器功能上的提升


    现下的金属探测器除了基本的探测警报功能外,一般都会提供许多各厂商精心研发的 特殊功能,如:
    地表平衡的功能:以利机器正确比对是否发现金属物而非干扰;
    选取功能:利用不同金属物体对磁场反应差异特性来遴选或排除不同类别之金属物件且 警报提示 深度的标示,可以告知所探测到的金属物体被埋藏的可能深度 ;
    面积的标示:可以显示探测到的金属物体大小,提供操作人员研判是否符合开挖的需求;
    语音的提示:可以立刻以语音提醒操作人员,比如灯光的照明-提供灯光以利于夜间运作。

    3、各种金属探测器的实际用途


    按功能市场分析:
    全金属探测器:能检测到所有不同材质的金属杂质,所以这款产品目前在全球市场来说,占有率是最高的,也比较受到各种用户的喜爱。而且这款产品用途很广,主要用于专门用于肉类、菌类、糖果、饮料、粮食、果蔬、乳制品、水产品、保健品、添加剂和调味品等食品中的铁金属以及非铁金属杂质的检测;用于化工原料、橡胶、塑胶、纺织品、皮革、化纤、玩具中的金属杂质检测用于医药、保健品、生物制品、化妆品、礼品、包装、纸品中的金属杂质;铁金属探测器,又叫“检针机”“验针机”“过针机”这类产品只能用于检测铁金属杂质,主要用于服装,纺织等缝制品行业,用于检测缝制品生产过程中遗留中产品中的断针。特别提醒:检针机不能应用于食品行业,因为检针机主要靠物理磁场和电磁场磁力检测,(检针机的探测头里面是磁铁),检针机的灵敏度会随着磁铁的磁性减弱而降低,所以这款设备使用寿命较短,再加上检针机只能检测铁金属,现在市场上面临淘汰的局面;铝箔金属探测器:主要用于检测铝膜或者铝铂包装的产品。工来生产中的很多药品,食品都用铝膜或者铝铂包装,只能用这类设备来检测。目前这款产品技术水平比较高,价格比较昂贵。一般价格在三十万以上。
    按用途来划分:
    手持金属探测器: 最早应用于机场,车间,码头,传扬,场馆的公共安检;工业上主要用于防止企业含量有金属万分的产品流失;最近几年在 中国市场也应用在各种考试当要,防止考生作弊。比如高考,研究生考试,公务员考试等。
    地下金属探测器: 最早应用在军事中的扫雷;考古中探测文物,探险中的探宝;现在地下金属探测器主要用于金属材料的探测,目前全国拥有一支使用地下金属探测器探测,挖掘废旧金属的探测大军。
    输送式金属探测器:主要用于检测体积比较小的产品,以及小型袋装,箱装工业产品,可以连接生产线,并实现联动。是目前国内应用最多的一类产品。4)下落式金属探测器:主要用于检测粉状,小颗粒颗粒状产品。主要用于塑料,橡胶行业 。
    管道式金属探测器:主要用于检测糊状,密封管道的流水线上。方便检测剔除管道中的金属杂质,主要用于如药片、胶囊及颗粒状(塑料粒子等)、粉末状物品的检测。
    真空输送式金属探测器:生产要求比较高的真空生产线上。这类产品对使用环境要求比较高。主要用于化工行业。
    压力输送式金属探测器:主要用于压力输送流水线,对污染要求比较高的产品.比如酱油,食用油的生产企业。液态或粘稠状物品在罐装或封装前检测,可以有效提高检测精度。
    平板式金属探测器:用于检测片状,丝状等比较薄的产品,价格比较便宜,合适小型企业使用 。

    相关文献

    添加视频 | 添加图册相关影像

    参考资料
    [1]^引用日期:2014-05-14
    [2]^引用日期:2014-05-14

    互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于www.baike.com。

    登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。

    互动百科用户登录注册
    此词条还可添加  信息模块

    WIKI热度

    1. 编辑次数:12次 历史版本
    2. 参与编辑人数:10
    3. 最近更新时间:2017-03-23 23:16:30

    相关词条

    编辑