• 正在加载中...
  • 命题

    在现代哲学数学逻辑学、语言学中,命题是指一个判断(陈述)的语义(实际表达的概念),这个概念是可以被定义并观察的现象。命题不是指判断(陈述)本身,而是指所表达的语义。当相异判断(陈述)具有相同语义的时候,他们表达相同的命题。在数学中,一般把判断某一件事情的句子叫做命题。亚里士多德在《工具论》,特别是其中的《范畴篇》中,研究了命题的不同形式及其相互关系,根据形式的不同对命题的不同类型进行了分类。

    编辑摘要

    基本信息 编辑信息模块

    中文名: 命题 其他外文名: assign a topic
    拼音: [mìng tí] 定义(初中): 判断一件事情的句子叫做命题
    定义(高中): 可以判断真假的语句叫做命题

    目录

    词语概念/命题 编辑

    基本信息

    命题命题
    词目:命题
    拼音:mìngtí
    英译 :assign a topic

    基本解释

    [assign a topic] 出题目
    命题作文
    ◎ 命题 mìngtí
    (1) [proposition]∶逻辑学指表达判断的语言形式,由系词把主词和宾词联系而成
    (2) [problem]∶数学或物理中要进行某种说明的问题
    命题:二等分一直线

    引证解释

    1.指所确定的诗文等的主旨。
    宋王禹偁《赠别鲍秀才序》:“公出文数十章,即进士 鲍生 之作也。命题立意,殆非常人。”
    2.拟题;出题目。
    明王鏊《震泽长语·经传》:“古人作诗,必自命题。”
    《二十年目睹之怪现状》第七三回:“有一回,书院里官课, 历城县 亲自到院命题考试。”
    曹靖华《飞花集·谈散文》:“而我的座上客既不象威风凛凛的大主考,命题作文,也不带任何框框。”
    这次高考的作文是命题作文。
    3.所出的题目;题目
    清孙枝蔚《赋得东渚雨今足呈潞安司理李吉六》诗序:“司理公下车后分题试各邑士之能诗者,余适在家兄署中,欣闻体恤属吏及惠爱农民之意,正图形诸歌咏,因见命题,辄不揣荒陋,勉作二律,附邑士之末。”
    《新华文摘》1981年第7期:“但在思想以至气质上,他依然是一位检察官,因此我才用了现在的命题。”
    4.逻辑学名词。表达判断的句子。
    毛泽东《新民主主义论》四:“‘ 中国革命是世界革命的一部分’,这一正确的命题,还是在一九二四年至一九二七年的 中国 第一次大革命时期,就提出了的。”一说凡陈述句所表达的意义为命题,被断定了的命题为判断。
    5.数学概念
    (1)初中数学中命题的概念为:“判断一件事情的语句”;高中教材中定义为:“可以判断真假的语句”。
    (2).一般地,在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
    (3).“若p,则q”形式的命题中p叫做命题的题设或条件,q叫做命题的结论。

    基本含义/命题 编辑

    命题的分类

    命题命题
    亚里士多德在《工具论》,特别是其中的《范畴篇》中,研究了命题的不同形式及其相互关系,根据形式的不同对命题的不同类型进行了分类。亚里士多德把命题首先分为简单的和复合的两类,但他对复合命题并没有深入探讨。他进而把简单命题按质分为肯定的和否定的,按量分为全称、特称和不定的命题,例如,"愉快不是善"。他还提到个体命题,这相当于后来所谓的以专名为主项、以普遍概念为谓项的单称命题。亚里士多德着重讨论了后人以A、E、I、O为代表的4种命题。他所举出的例子是:"每个人是白的";"没有人是白的";"有人是白的";"并非每个人是白的"。关于模态命题,他讨论了必然、不可能、可能和偶然这 4个模态词。亚里士多德所说的模态,是指事件发生的必然性、可能性等。
    亚里士多德以后的逻辑学家,如泰奥弗拉斯多、麦加拉学派和斯多阿学派的逻辑学家,以及中世纪的逻辑学家等,又对包含有命题联结词"或者"、"并且"、"如果,则"等的复合命题进行了不断的探讨,从而丰富了逻辑学关于命题的学说

    康德的分类

    I.康德根据他的范畴理论对判断作了分类。这个分类对后世的影响很大。康德对判断的分类主要有4个方面:①量,包括全称、特称、单称三种判断;②质,包括肯定、否定、无限(所有S是非P)这几种判断;③关系,有直言(两概念间的关系)、假言(两判断间的关系)、选言(若干判断间的关系)判断。④模态,有或(概)然、实然、确然几种判断。康德所谓的模态,是指认识的程度。他认为组成假言判断、选言判断的判断,都是或然的。
    传统逻辑的分类
    19世纪下半叶欧洲逻辑读本对命题的分类不尽一致。大体说来,按关系即按命题主谓项之间的关系分,有直言命题、假言命题(后件主谓项的联系以前件为条件)和选言命题(谓项之间对主项有选择关系)。从质的角度分,有肯定命题和否定命题。从量的角度分,有全称命题,包括单称命题、普遍命题(凡S是P)和特称命题。这些读本还讨论了其他一些关于数量多少的命题,如涉及"多数"、"少数"之类的命题;并认为,"多数 S是P"等值于"少数S不是P","少数 S是P"等值于"多数S不是P"。因此,从"所有S是P"推不出"多数S是P",也推不出"少数S是P"。这些传统逻辑读本在讨论选言命题时,也往往论及联言命题、分离命题(非A并且非B)等。另外,还有一类可解析命题也是常常提到的。在这类命题中,有一种叫区别命题,其形式为"只有S才是P";还有一种叫除外命题,其形式为"除是M的S外每个S是P"。

    形式分析/命题 编辑

    现代逻辑对命题形式的分析 

    由于推理的有效性只与推理的前提和结论的形式有关,而与作为前提和结论的命题的具体内容无关。因此,在经典的二值逻辑里,命题可以只看成真(记为T)和假(记为F)两种,并统称为真值。它以p,q,...为命题变项,其变域为{T,F}。最基本的推理,仅仅与命题联结词有关。自然语言中最常见的命题联结词有:"或者"、"并且"、"如果,则"、"并非"等,把这些联结词抽象为真值联结词,分别记为:"∨",表示析取词;"∧",表示合取词;"→" ,表示蕴涵词;"风",表示等值词,相当于"当且仅当";"填",表示否定词。真值联结词与命题变项的一定的组合,就是复合命题形式的抽象,它们实质上是一种真值函项。真值函项的域和值域都是 {T,F},这些函项把一个或一组真值映射到一个并且只有一个真值上。这样,分别由∨,∧,→,风,填这 5个真值联结词都可以用真值函项定义。联结词也可以在命题形式中多次出现,以构成较为复杂的形式。
    对命题形式的进一步分析,要深入到最简单命题内部的非命题成分。在现代逻辑中,类似"苏格拉底是人"这样的命题,被认为是最简单的命题。若以s代表"苏格拉底",以M代表"人",该类命题就可记为M(s),这表示某一个体s具有性质R。推广来说,最简单的命题的形式为F(x),可读作论域中的个体x具有性质F;较为复杂的形式可以有填G(x,y)),可读作论域中的个体x,y)之间具有关系G。在这里,x,y),...称为个体变项;F,G,...称为谓词变项,而F是一元的,G是二元的。n个个体变项之间有n元关系H就记为H(x,...,xn-1)。若以L代表"处在流动的状态",而"每个事物都处在流动的状态"就可记为风xL(x),这可读为:对论域里所有个体x 而言,x 处在流动的状态。其中,风x 叫做全称量词,风是全称量词符号。若以B代表"尚未被人认识的",则"至少有一个东西是尚未被人认识的",可记为 ヨxB(x),读作论域中至少有一个体 x,x 尚未被人认识。在这里ヨx 是存在量词,而ヨ是存在量词符号。"不存在一个最大的实数", 可表示为 填ヨy)风x(y)>x),其论域为实数。"任意两实数之间至少有一个实数",可表示为风x风y)ヨz(x <y)→(x <z∧z<y))),该论域为实数。一般全称命题的形式是风x(Fx→Gx),而存在命题、即传统逻辑所谓的特称命题的形式是 ヨx(Fx∧Gx)。所有这些都是现代逻辑里的经典一阶谓词逻辑对命题形式所作的初步分析(见谓词逻辑)。此外,把量词加之于谓词变项,便形成了高阶逻辑。也还可以引入模态词,或分析疑问句、命令句等等,从而建立有关的逻辑理论。

    四种命题/命题 编辑

    命题命题
    1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
    2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
    3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

    相互关系/命题 编辑

    1.四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
    2.四种命题的真假关系:(1)两个命题互为逆否命题,它们有相同的真假性。(2)两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)

    命题关系/命题 编辑

    1、能够判断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题
    2、“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。
    3、命题的分类:
    原命题:一个命题的本身称之为原命题,如:若x>1,则f(x)=(x-1)^2单调递增。
    逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)^2单调递增,则x>1。
    否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,如:若x《1,则f(x)=(x-1)^2不单调递增。
    逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题,如:若f(x)=(x-1)^2不单调递增,则x《1。 
    4、命题的否定
    命题的否定是只将命题的结论否定的新命题,这与否命题不同。
    5、4种命题及命题的否定的真假性关系
    原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假性相反。

    命题条件/命题 编辑

    充分和必要条件

    1.“若p,则q”为真命题,叫做由p推出q,记作p=>q,并且说p是q的充分条件,q是p的必要条件
    2.“若p,则q”为假命题,叫做由p推不出q,记作p≠>q,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。

    充要条件

    如果既有p=>q,又有q=>p,就记作p<=>q,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。

    几何命题/命题 编辑

    命题命题
    特指欧几里德的《几何原本》中的被证明的命题,即下列48个命题:
    1. 在一个已知有限直线上作一个等边三角形。
    2. 由一个已知点(作为端点)作一线段等于已知线段。
    3. 已知两条不相等的线段,试由大的上边截取一条线段使它等于另外一条。
    4. 如果两个三角形有两边分别等于两边,而且这些相等的线段所夹的角相等,那么,它们的底边等于底边,三角形全等于三角形,而且其余的角等于其余的角,即那等边所对的角。
    5. 在等腰三角形中,两底角彼此相等;并且,若向下延长两腰,则在底以下的两角也彼此相等。
    6. 如果在一个三角形中,有两角彼此相等,则等角所对的边也彼此相等。
    7. 在已知线段上(从它的两个端点)作出相交于一点的二线段,则不可能在该线段(从它的两个端点)的同侧作出相交于另一点的另二条线段,使得作出的二线段分别等于前面二线段。即每个交点到相同端点的线段相等。
    8. 如果两个三角形的一个有两边分别等于另一个的两边,并且一个的底等于另一个的底,则夹在等边中间的角也相等。
    9. 二等分一个己知直线角。
    10. 二等分已知有限直线。
    11. 由已知直线上一已知点作一直线和已知直线成直角
    12. 由已知无限直线外一已知点作该直线的垂线。
    13. 一条直线和另一条直线所交成的邻角,或者是两个直角或者它们等于两个直角的和。
    14. 如果过任意直线上点有两条直线不在这一直线的同侧,且和直线所成邻角和等于二直角,则这两条直线在同一直线上。
    15. 如果两直线相交,则它们交成的对顶角相等。
    16. 在任意的三角形中,若延长一边,则外角大于任何一个内对角。
    17. 在任何三角形中,任何两角之和小于两直角。
    18. 在任何三角形中,大边对大角。
    19. 在任何三角形中,大角对大边。
    20. 在任何三角形中,任意两边之和大于第三边。
    21. 如果由三角形的一条边的两个端点作相交于三角形内的两条线段,由交点到两端点的线段的和小于三角形其余两边的。但是,其夹角大于三角形的顶角。
    22. 试由分别等于已知三条线段的三条线段作一个三角形:在这样的三条已知线段中,任二条线段之和必须大于另外一条线段。
    23. 在已知直线和它上面一点,作一个直线角等于己知直线角。
    24. 如果两个三角形中,一个的两条边分别与另一个的两条边相等,且一个的夹角大于另一个的夹角,则夹角大的所对的边也较大。
    25. 如果在两个三角形中,一个的两条边分别等于另一个的两条边,则第三边较大的所对的角也较大。
    26. 如果在两个三角形中,一个的两个角分别等于另一个的两个角,而且一边等于另一个的一边。即或者这边是等角的夹边,或者是等角的对边。则它们的其他的边也等于其他的边,且其他的角也等于其他的角。
    27. 如果一直线和两直线相交所成的错彼此相等,则这二直线互相平行。
    28. 如果一直线和二直线相交所成的同位角相等,或者同旁内角的和等于二直角,则二直线互相平行。
    29. 一条直线与两条平行直线相交,则所成的内错角相等,同位角相等,且同旁内角的和等于二直角。
    30. 一些直线平行于同一条直线,则它们也互相平行
    31. 过一已知点作一直线平行于已知直线。
    32. 在任意三角形中,如果延长一边,则外角等于二内对角的和,而且三角形的三个内角的和等于二直角。
    33. 在同一方向(分别)连接相等且平行的线段(的端点),它们自身也相等且平行。
    34. 在平行四边形面片中,对边相等,对角相等且对角线二等分其面片。
    35. 在同底上且在相同两平行线之间的平行四边形彼此相等。
    36. 在等底上且在相同二平行线之间的平行四边形彼此相等。
    37. 在同底上且在相同二平行线之间的三角形彼此相等。
    38. 在等底上且在相同二平行线之间的三角形彼此相等。
    39. 在同底上且在底的同一侧的相等三角形必在相同二平行线之间。
    40. 等底且在底的同侧的相等三角形也在相同二平行线之间。
    41. 如果一个平行四边形和一个三角形既同底又在二平行线之间,则平行四边形是这个三角形的二倍。
    42. 用已知直线角作平行四边形,使它等于已知三角形。
    43. 在任何平行四边形中,对角线两边的平行四边形的补形彼此相等。
    44. 用已知线段及已知直线角作一个平行四边形,使它等于已知三角形。
    45. 用一个已知直线角作一平行四边形使它等于已知直线形。
    46. 在已知线段上作一个正方形。
    47. 在直角三角形中,直角所对的边上的正方形等于夹直角两边上正方形的和。
    48. 如果在一个三角形中,一边上的正方形等于这个三角形另外两边上正方形的和,则夹在后两边之间的角是直角。

    逻辑联结词/命题 编辑

    命题命题
    简单的逻辑联结词包括:或、且、非。
    (1)或
    1、用联结词“或”把p与q联结起来称为一个新命题,记作p∨q,读作“p或q”。
    2、命题p∨q的真假的判定:一真必真
    p   q   p∨q
    真 真 真
    真 假 真
    假 真 真
    假 假 假
    (2)且

    1、用联结词“且”把p与q联结起来称为一个新命题,记作p∧q,读作“p且q”。
    2、命题p∧q的真假的判定:一假必假
    p    q  p∧q
    真 真  真
    真  假  假
    假  真  假
    假  假  假
    (3)非
    1、对于一个命题p如果仅将它的结论否定,就得到一个新命题,记作┐p,读作“非p”。
    2、命题┐p的真假的判定:真假相对
    p    ┐p
    真   假
    假   真

    《几何原本》命题(特指)/命题 编辑

    特指欧几里德的《几何原本》中的被证明的命题,如下列48个命题:
    1. 在一个已知有限直线上作一个等边三角形。
    2. 由一个已知点(作为端点)作一线段等於已知线段。
    3. 已知两条不相等的线段,试由大的上边截取一条线段使它等于另外一条。
    4. 如果两个三角形有两边分别等于两边,而且这些相等的线段所夹的角相等,那么,它们的底边等于底边,三角形全等于三角形,而且其余的角等于其余的角,即那等边所对的角。
    5. 在等腰三角形中,两底角彼此相等;并且,若向下延长两腰,则在底以下的两角也彼此相等。
    6. 如果在一个三角形中,有两角彼此相等,则等角所对的边也彼此相等。
    7. 在已知线段上(从它的两个端点)作出相交於一点的二线段,则不可能在该线段(从它的两个端点)的同侧作出相交于另一点的另二条线段,使得作出的二线段分别等于前面二线段。即每个交点到相同端点的线段相等。
    8. 如果两个三角形的一个有两边分别等于另一个的两边,并且一个的底等于另一个的底,则夹在等边中间的角也相等。
    9. 二等分一个己知直线角
    10. 二等分已知有限直线。
    11. 由已知直线上一已知点作一直线和已知直线成直角。
    12. 由已知无限直线外一已知点作该直线的垂线。
    13. 一条直线和另一条直线所交成的邻角,或者是两个直角或者它们等于两个直角的和。
    14. 如果过任意直线上点有两条直线不在这一直线的同侧,且和直线所成邻角和等于二直角,则这两条直线在同一直线上。
    15. 如果两直线相交,则它们交成的对顶角相等。
    16. 在任意的三角形中,若延长一边,则外角大於任何一个内对角
    17. 在任何三角形中,任何两角之和小於两直角。
    18. 在任何三角形中,大边对大角。
    19. 在任何三角形中,大角对大边。
    20. 在任何三角形中,任意两边之和大于第三边。
    21. 如果由三角形的一条边的两个端点作相交于三角形内的两条线段,由交点到两端点的线段的和小于三角形其余两边的和。但是,其夹角大于三角形的顶角。
    22. 试由分别等于已知三条线段的三条线段作一个三角形:在这样的三条已知线段中,任二条线段之和必须大于另外一条线段。
    23. 在已知直线和它上面一点,作一个直线角等于己知直线角。
    24. 如果两个三角形中,一个的两条边分别与另一个的两条边相等,且一个的夹角大于另一个的夹角,则夹角大的所对的边也较大。
    25. 如果在两个三角形中,一个的两条边分别等于另一个的两条边,则第三边较大的所对的角也较大。
    26. 如果在两个三角形中,一个的两个角分别等于另一个的两个角,而且一边等于另一个的一边。即或者这边是等角的夹边,或者是等角的对边。则它们的其他的边也等于其他的边,且其他的角也等于其他的角。
    27. 如果一直线和两直线相交所成的错角彼此相等,则这二直线互相平行。
    28. 如果一直线和二直线相交所成的同位角相等,或者同旁内角的和等于二直角,则二直线互相平行。
    29. 一条直线与两条平行直线相交,则所成的内错角相等,同位角相等,且同旁内角的和等于二直角。
    30. 一些直线平行于同一条直线,则它们也互相平行。
    31. 过一已知点作一直线平行於已知直线。
    32. 在任意三角形中,如果延长一边,则外角等于二内对角的和,而且三角形的三个内角的和等于二直角。
    33. 在同一方向(分别)连接相等且平行的线段(的端点),它们自身也相等且平行。
    34. 在平行四边形面片中,对边相等,对角相等且对角线二等分其面片。
    35. 在同底上且在相同两平行线之间的平行四边形彼此相等。
    36. 在等底上且在相同二平行线之间的平行四边形彼此相等。
    37. 在同底上且在相同二平行线之间的三角形彼此相等。
    38. 在等底上且在相同二平行线之间的三角形彼此相等。
    39. 在同底上且在底的同一侧的相等三角形必在相同二平行线之间。
    40. 等底且在底的同侧的相等三角形也在相同二平行线之间。
    41. 如果一个平行四边形和一个三角形既同底又在二平行线之间,则平行四边形是这个三角形的二倍。
    42. 用已知直线角作平行四边形,使它等于已知三角形。
    43. 在任何平行四边形中,对角线两边的平行四边形的补形彼此相等。
    44. 用已知线段及已知直线角作一个平行四边形,使它等于已知三角形。
    45. 用一个已知直线角作一平行四边形使它等于已知直线形。
    46. 在已知线段上作一个正方形。
    47. 在直角三角形中,直角所对的边上的正方形等于夹直角两边上正方形的和。
    48. 如果在一个三角形中,一边上的正方形等于这个三角形另外两边上正方形的和,则夹在后两边之间的角是直角。

    高考英语语法命题的若干规律/命题 编辑

    规律1 考查英语语法基础知识
    尽管高考英语的单项填空题的考点分布很广,但可以肯定的是,它主要涉及的还是英语语法的基础知识,只有具备一定的语法基础,同时兼顾一定的解题方法和技巧,大部分考题都是可以做出来的。如:
    1. Judy is going to marry the sailor she ______ in Rome last year. (2008重庆卷)
    A. meets B. met C. has met D. would meet
    【分析】B。根据句末的last year可知,空格处应用一般过去时。注:she met in Rome last year为修饰the sailor的定语从句。
    2. Isn’t it amazing how the human body heals ______ after an injury? (2008江西卷)
    A. himself B. him C. itself D. it
    【分析】C。同学们在初中英语中就学过,当主语和宾语指同一个人或事物时,宾语必须要用反身代词,不能用宾格代词。注:heal oneself在此指“自愈”。
    规律2 在语境中考查语法运用
    近年来高考英语单项填空的一个最大特点就是突出语境考查,即将具体的语法知识置于特定的语境中进行考查,既考查运用语法知识的正确性,同时也考查运用语法知识的得体性。如:
    1. I thought you’d be late for the concert, ______ we ended up getting there ahead of time. (2008湖南卷)
    A. but B. or C. so D. for
    【分析】A。比较空格前后两句的意思:前面说“我原以为你听音乐会会迟到的”,后面说“结果我们提前赶到了”。很显然空格处应填一个表转折的连词,这样才符合句子的语境。
    2. You ______ be hungry already—you had lunch only two hours ago! (2008浙江卷)
    A. wouldn’t B. can’t C. mustn’t D. needn’t
    【分析】B。做好此题要注意句子后半部的语境。既然you had lunch only two hours ago(你两个小时前才吃过中饭),所以你现在“不可能”就饿了,所以答案选B。
    规律3 综合考查语法基础知识
    这里说的综合考查语法知识,指的是一道考题同时考查两个或多个语法点,如将时态考点与语态考点综合,将时态考点与主谓一致考点综合,将非谓语动词考点与并列句考点综合,将复合句考点与简单句考点综合,等等。如:
    1. —Did you go to the show last night?
    —Yeah. Every boy and girl in the area ______ invited. (2008陕西卷)
    A. were B. have been C. has been D. was
    【分析】D。此题既考查时态的用法,同时又考查主语一致。根据问句中的时态和last night这一短语可知,此处谈的是昨晚的事,故应用一般过去时,而不用现在完成时。另外,根据英语语法,当两个或多个名词并列作主语,且受到every的修饰时,其后谓语动词要用单数。故答案选D。
    2. —Do you have any problems if you ______ this job?
    —Well, I’m thinking about the salary... (2008湖南卷)
    A. offer B. will offer C. are offered D. will be offered
    【分析】C。此题既考查时态,同时又考查被动语态。由于if引导的是条件状语从句,所以要用一般现在时表示将来意义,而不能直接使用将来时态,故可排除B和D;再根据offer sb sth(为某人提供某物)这一句式可知,sb与offer之间为被动关系,故要用被动语态。
    规律4 在特定语境中考查边缘知识
    这里所说的边缘知识,指的是一般语法上涉及得较少,许多同学在复习中接触较少的知识点。这类考点有的虽然一般语法书讲得较少,但并不意味着它在英语中并不重要。如:
    1. When she first arrived in China, she wondered what the future might have ______ for her, but now all her worries are gone. (2008湖北卷)
    A. in need B. in time C. in preparation D. in store
    【分析】D。in store for是习语,其意为“为……储备着”“等待着……”,如:The runner kept some energy in store for spurting at the end. 那名赛跑的人为最后的冲刺贮存精力。There’s a surprise in store for you. 你一定会大吃一惊的。
    2. Elizabeth has already achieved success ______ her wildest dreams. (2008陕西卷)
    A. at B. beyond C. within D. upon
    【分析】B。beyond one’s wildest dreams为习语,其意为“远远超出想象或希望”,这可能是许多同学不太熟悉的一个用法,并且它在教材中也没有出现过。又如:The scheme succeeded beyond my wildest dreams. 这个计划超乎异常地成功了。
    3. Engines are to machines _______ hearts are to animals. (2006山东卷)
    A. as B. that C. what D. which
    【分析】C。这是一个比较难的考题,就算是放到大学四、六级考试中也绝对算是难题,一般的英语语法书也绝对没有涉及此问题,就是连最新出版的《牛津高阶英汉双解词典》和《朗文当代高级英语辞典》的what词条下也找不到此用法。现分析如:what 在此用作连词,其意为“好比”“犹如”“就像”,用以引导相似状语从句。如:Air is to us what water is to fish. 我们离不开空气,就像鱼儿离不开水一样。Reading is to the mind what food is to the body. 读书与思想的关系就好比食物与健康的关系。
    规律5 在复杂语境中考查简单知识
    有的知识点本来很简单,如果是单独进行考查,一般学生都不会出错,但是如果将其置于一个较复杂的语境中,许多考生就可能受复杂句子结构的影响而选错。如:
    1. —Could you tell me how to get to Victoria Street? (2008辽宁卷)
    —Victoria Street? ______ is where the Grand Theatre is.(www.yygrammar.com)
    A. Such B. There C. That D. This
    【分析】C。此题考查指示代词that的远指用法,这是同学们在初中就学过的知识了。但是,由于命题者将这个本来很简单的知识点放到了一个比较复杂的对话背景中,分散了同学们对被考查知识点的注意力,所以许多同学在做此题时选错了答案。请再看一个类似的例子:That day we visited an old house. That’s where he spent his last years. 那天我们去参观了一座老房子,那就是他去世前几年他住的地方。这类句式如果改用this,则表近指,如:This is where the river is deepest. 这是河流的最深处。This is where we change from car to bus. 这就是我们从小汽车换乘公共汽车的地方。
    2. If the weather had been better, we could have had a picnic. But it ______ all day. (2008全国Ⅱ)
    A. rained B. rains C. has rained D. is raining
    【分析】A。此题考查一般过去时的用法,但试题使用了虚拟语气作为命题背景,且该虚拟语气谈的是过去情况(根据句中的had been和could have had可知),句意为“要是(当时)天气好一点,我们就可以去野餐了”。该虚拟语气的言外之意是“(由于天气不好)我们没有去野餐”。为什么没去呢?but后说的就是其原因:整天都在下雨。这里说的“下雨”,显然指的是过去的情况,故用一般过去时。
    规律6 利用思维定势设置干扰项
    同学们在对某个知识点或重要句式进行反复操练后,往往会形成一定的思维定势。由于思维定势在很大程度上带有惯性,有时甚至是惰性,所以同学们在做题时若不仔细读题,认真分析,很可能会受此影响,步入误区。如:
    1. Nancy enjoyed herself so much ______ she visited her friends in Sydney last year. (2008福建卷)
    A. that B. which C. when D. where
    【分析】C。本题很容易让考生受思维定势的负面影响,见到so马上选择that,殊不知此题考查的是when引导的时间状语从句,句意为:南希去年拜访悉尼的朋友时过得非常开心。如果选A,则句意为:南希玩得如此开心以至于拜访了悉尼的几个朋友。显然,意思不合逻辑。
    2. —Have you known Dr. Jackson for a long time?
    —Yes, since she ______ the Chinese Society. (2008宁夏卷)
    A. has joined B. joins C. had joined D. joined
    【分析】D。许多同学认为since总是要与现在完成时连用的,所以误选了A。其实,本句中since she join the Chinese Society为I have known Dr. Jackson since she joined the Chinese Society之省略。连词since所搭配的时态通常是:主句用现在完成时,从句用一般过去时。
    3. —They are quiet, aren’t they?
    —Yes. They are accustomed ______ at meals. (2008江苏卷)
    A. to talk B. to not talk C. to talking D. to not talking
    【分析】D。此题设计得很巧妙。有的同学在排除选项B时,同时也会排除选项D,因为它们的结构太相似了。但事实上,正确答案正是D。be accustomed to的意思是“习惯于做……”,其中的to通常被认为是介词,后接名词或动名词,但在现代英语中,其后也可接动词原形,即其中的to被视为不定式符号。照此分析,好像四个答案都可以,但其实只有D最佳。因为根据语境分析(注意其中的are quiet, yes等关键词),此题应选一个否定式,故可排除A和C。另外,从语法上分析,非谓语动词的否定式总是将not置于非谓语动词之前,所以C应改为not to talk才对;至于D,由于其中的to是介词,其后接动名词talking作宾语,动名词talking的否定式为not talking,所以说to not talking是正确的。
    规律7 直接引用词典原句进行命题
    近年来,高考英语命题一直有个习惯,就是喜欢从一些原版英语词典上直接引用例句进行命题。这点希望引起同学们的注意。下面请看几个例子:
    1. My neighbor asked me to go for ______ walk, but I don’t think I’ve got ______ energy. (2008辽宁卷)
    A. a; 不填 B. the; the C. 不填; the D. a; the
    【分析】D。go for a walk为固定表达,意为“去散步”;have got the energy意为“有精力”。此题出自Cambridge Advanced Learner’s Dictionary的the词条,词典上的原句为:I’d like to go out this evening, but I don’t think I’ve got the energy.
    2. —I’d like some more cheese.
    —Sorry, there’s ______ left. (2008浙江卷)
    A. some B. none C. a little D. few
    【分析】B。由于cheese不可数,故可排除D;再根据句中的sorry可知,此处应填表否定意义的none。注:此题出自Cambridge Advanced Learner’s Dictionary的none词条,词典上的原句为:“I’d like some more cheese.” “I’m sorry there’s none left.”
    3. He found it increasingly difficult to read, ______ his eyesight was beginning to fail. (2008山东卷)
    A. though B. for C. but D. so
    【分析】B。for在此表原因。又如:He shook his head, for he thought differently. 他摇了摇头,因为他有不同想法。 注:此题出自Longman Dictionary of Contemporary English的for词条,词典上的原句为:He found it increasingly difficult to read, for his eyesight was beginning to fail.

    形式分析/命题 编辑

    命题命题
    现代逻辑对命题形式的分析
    由于推理的有效性只与推理的前提和结论的形式有关,而与作为前提和结论的命题的具体内容无关。因此,在经典的二值逻辑里,命题可以只看成真(记为T)和假(记为F)两种,并统称为真值。它以p,q,...为命题变项,其变域为{T,F}。最基本的推理,仅仅与命题联结词有关。自然语言中最常见的命题联结词有:"或者"、"并且"、"如果,则"、"并非"等,把这些联结词抽象为真值联结词,分别记为:"∨",表示析取词;"∧",表示合取词;"→" ,表示蕴涵词;"风",表示等值词,相当于"当且仅当";"填",表示否定词。真值联结词与命题变项的一定的组合,就是复合命题形式的抽象,它们实质上是一种真值函项。真值函项的域和值域都是 {T,F},这些函项把一个或一组真值映射到一个并且只有一个真值上。这样,分别由∨,∧,→,风,填这 5个真值联结词都可以用真值函项定义。联结词也可以在命题形式中多次出现,以构成较为复杂的形式。(见命题逻辑)
    对命题形式的进一步分析,要深入到最简单命题内部的非命题成分。在现代逻辑中,类似"苏格拉底是人"这样的命题,被认为是最简单的命题。若以s代表"苏格拉底",以M代表"人",该类命题就可记为M(s),这表示某一个体s具有性质R。推广来说,最简单的命题的形式为F(x),可读作论域中的个体x具有性质F;较为复杂的形式可以有填G(x,y)),可读作论域中的个体x,y)之间具有关系G。在这里,x,y),...称为个体变项;F,G,...称为谓词变项,而F是一元的,G是二元的。n个个体变项之间有n元关系H就记为H(x,...,xn-1)。若以L代表"处在流动的状态",而"每个事物都处在流动的状态"就可记为风xL(x),这可读为:对论域里所有个体x 而言,x 处在流动的状态。其中,风x 叫做全称量词,风是全称量词符号。若以B代表"尚未被人认识的",则"至少有一个东西是尚未被人认识的",可记为 ヨxB(x),读作论域中至少有一个体 x,x 尚未被人认识。在这里ヨx 是存在量词,而ヨ是存在量词符号。"不存在一个最大的实数", 可表示为 填ヨy)风x(y)>x),其论域为实数。"任意两实数之间至少有一个实数",可表示为风x风y)ヨz(x <y)→(x <z∧z<y))),该论域为实数。一般全称命题的形式是风x(Fx→Gx),而存在命题、即传统逻辑所谓的特称命题的形式是 ヨx(Fx∧Gx)。所有这些都是现代逻辑里的经典一阶谓词逻辑对命题形式所作的初步分析(见谓词逻辑)。此外,把量词加之于谓词变项,便形成了高阶逻辑。也还可以引入模态词,或分析疑问句、命令句等等,从而建立有关的逻辑理论。

    相关条目/命题 编辑

    美容     教育    体育      社会

    相关文献

    添加视频 | 添加图册相关影像

    互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于www.baike.com。

    登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。

    互动百科用户登录注册
    此词条还可添加  信息模块

    WIKI热度

    1. 编辑次数:31次 历史版本
    2. 参与编辑人数:13
    3. 最近更新时间:2015-03-21 12:03:52

    互动百科

    扫码下载APP