• 正在加载中...
  • 引力波

    引力波是时空曲率的扰动以行进波的形式向外传递的一种方式,是这些波从星体或星系中辐射出来的现象。是由于空间质量和速度的变化导致空间产生的波动。电荷被加速时会发出电磁辐射,同样有质量的物体被加速时就会发出引力辐射,这是广义相对论的一项重要预言。引力波与流体力学中的重力波很相似,当液体表面或内部液团由于密度差异离开原来位置,在重力和浮力的综合作用下,液团会处于上下振动以达到平衡的状态,即产生波动。LIGO在2016年2月11日宣布:探测到引力波的存在。爱因斯坦广义相对论实验验证中最后一块缺失的“拼图”被填补了。美国科研人员利用激光干涉引力波天文台于去年9月首次探测到引力波。当两个黑洞于约13亿年前碰撞,两个巨大质量结合所传送出的扰动,于2015年9月14日抵达地球,被地球上的精密仪器侦测到,证实了爱因斯坦100年前所做的预测。2017年10月16日,全球多国科学家同步举行新闻发布会,宣布人类第一次直接探测到来自双中子星合并的引力波,并同时“看到”这一壮观宇宙事件发出的电磁信号。

    编辑摘要

    基本信息 编辑信息模块

    中文名: 引力波 英文名: Gravitational wave
    其他外文名: Gravity wave
    提出者: 美国马里兰大学教授J·韦伯 提出时间: 1959年
    应用学科: 物理学 适用领域范围: 天文学
    报告发现时间: 北京时间2016年2月11日23:30左右 发现地点: 美国激光干涉引力波天文台

    目录

    内容简介/引力波 编辑

    引力波引力波

    引力波是爱因斯坦在广义相对论中提出的,即物体加速运动时给宇宙时空带来的扰动。通俗地说,可以把它想象成水面上物体运动时产生的水波。但是,只有非常大的天体才会发出较容易探测的引力波,如超新星爆发或两个黑洞相撞时,而这种情况非常罕见。因此,相对论提出一百多年来,其“水星进动”和“光线偏转”等重要预言被一一证实,而引力波却始终未被直接探测到。

    引力波有宇宙初生时的“啼哭”之称,它自宇宙诞生后便一直四散传播,现在可探测到的余响能量非常小,被称为“随机引力波背景”。在“激光干涉引力波观测台”中,科学家便是努力在长达4公里的激光光线中,寻找“随机引力波背景”带来的比一个原子核还小的扰动。

    主要性质/引力波 编辑

    示意图示意图

    引力波以波动形式和有限速度传播的引力场。按照广义相对论,加速运动的质量会产生引力波。

    引力波的主要性质是:它是横波,在远源处为平面波;有两个独立的偏振态;携带能量;在真空中以光速传播等。引力波携带能量,应可被探测到。但引力波的强度很弱,而且,物质对引力波的吸收效率极低,直接探测引力波极为困难。曾有人宣称在实验室里探测到了引力波,但未得到公认。天文学家通过观测双星轨道参数的变化来间接验证引力波的存在。

    例如,双星体系公转、中子星自转、超新星爆发,及理论预言的黑洞的形成、碰撞和捕获物质等过程,都能辐射较强的引力波。我们所预期在地球上可观测到的最强引力波会来自很远且古老的事件,在这事件中大量的能量发生剧烈移动(例子包括两颗中子星的对撞,或两个极重的黑洞对撞)。这样的波动会造成地球上各处相对距离的变动,但这些变动的数量级应该顶多只有10^-21。以LIGO引力波侦测器的双臂而言,这样的变化小于一颗质子直径的千分之一。

    公式计算/引力波 编辑

    引力波
引力波

    由E=mc^2、E=nh(J)、F=am、λν=c、q=h(J)*ν得:

    F=aE/c^2=nh(J)a/c^2=nh(J)/(t*c)=E/c*t=nh(J)*ν/c=nh(J)/λ=E/λ。a=c^2/λ=ν*c。

    由a=ν*c,将a替换为重力加速度g,再由g=ν*c,就可以计算出地球重力场引力波的频率。

    即ν=g/c,地球表面重力场加速度g=9.80米/秒^2,光速c=299792458m/s,

    则ν=g/c=9.80/299792458=3.2*10^-8(1/s)。

    而对应的引力波的波长则是λ=c/ν=299792458/3.2*10^-8=9.3685*10^15(m)。

    爱因斯坦虽然在在其广义相对论中预言了引力波的存在,但爱因斯坦在广义相对论中提出的却是物体加速运动时给宇宙时空带来的扰动。

    而拓变论发现新的事实,却是引力波是引力场本身的属性。

    事实上引力波无处不在,在整个宇宙范围内到处都有到处都是,只是随着引力场强度(正比于g)不同而不同。

    引力波也不是什么过去遗留下来的,而是引力场场强的另一种表现。

    引力波的波长是如此之长,以及引力波的频率是如此之低,正是引力场强度之弱真实证明。同时我们也可以指出为什么至今还没有探测到引力波的存在,是科学家把把其性质搞错了,主攻方向也搞颠倒了,其波长不是如何的短,而是如此的长,因此他们才探测不到。其实引力波是可以随时随地就可以检测到的,对应着此时此地的引力场强度或重力加速度,就可以探测到相应的引力波的波长和频率。

    根据地球表面引力波的如此情况作为参照对比,就可以基本知道电磁场、强作用场和弱作用场的大致频率和波长的数量级了。

    目前人们已知的四种基本作用力的强度分别是,强力其相对强度定义为1,其次就是电磁力为10^-2,弱力为10^-13,引力为10^-38。

    这样我们就可以依据地球表面的重力场强度的波长λ=9.3685*10^15(m)或频率ν=3.2*10^-8(1/s),来大致确定其他三种基本作用力场强度的波长与频率了。

    地球表面的重力场强度的波长λ=9.3685*10^15(m)与频率ν=3.2*10^-8(1/s)。

    那么强力场强度的波长λ=10^-22(m)与频率ν=10^30(1/s),电磁力场强度的波长λ=10^-20(m)与频率ν=10^28(1/s),弱力场强度的波长λ=10^-9(m)与频率ν=10^17(1/s)。

    由于宇宙空间场体的平均引力场强度要比地球表面的引力场强度低得多得多,所以这样计算出来的数据就要高的多,只是相对的比较一下而已。

    侦测办法/引力波 编辑

    引力波引力波

    虽然引力辐射并未被清清楚楚地“直接”测到,然而已有显著的“间接”证据支持它的存在。最著名的是对于脉冲星(或称波霎)双星系统PSR1913 16的观测。这系统被认为具有两颗中子星,以极其紧密而快速的模式互相环绕对方。其并且呈现了渐进式的旋近(in-spiral),旋近时率恰好是广义相对论所预期的值。对于这样的观测,最简单(也几乎是广为接受)的解释为:广义相对论一定是对这种系统的重力辐射给出了准确的说明才得以如此。泰勒和赫尔斯因为这些成就共同获得了1993年的诺贝尔物理学奖。

    1959年,美国马里兰大学教授韦伯发表了证实引力波存在的消息,这引起了世界物理学界一阵狂热的激动。事情是这样的,韦伯等人制造了6台引力波检验器,分别放在不同地点进行长期的检波记载。结果发现在各台检波器上都记录到一种相同的、不规则的“扰动”,并证明它并不是由声学振动、地震、电磁干扰或宇宙线干扰等引起的,因此,他们认为“不能排除这就是引力波”。之后,许多国家的科学家采用各种方法企图证实宇宙深处的同样“来客”,但终未得到肯定的结果,于是激动之余,人们便只能叹息罢了。

    射电天文学的蓬勃发展为物理学家们新的探测途径。射电望远镜的探测本领比光学望远镜强得多,美国天文物理学家泰勒等人在1974年,靠着射电望远镜发现了一个双星体系——脉冲射电源(PSR1913 16)。按照广义相对论计算,双星互相绕转发出引力辐射,它们的轨道周期就会因此而变短,(PSR1913 16)的变化率为-2.6*10^ -12。而在1980年,他们也是采用精密的射电仪器,由实验行到观察值为-(3.2±0.01×10 ^-12,与理论计算值在误差范围内正好符合。这可以说是引力波的第一个定量证据。上述消息传开,引起物理学界的极大震动。科学家们信心倍增,为欢迎引力辐射这位宇宙“娇客”将开展更为广泛的探索研究。因为对引力波的探测不仅可以进一步验证广义相对论的正确性,而且将为人类展现出一幅全新的物质世界图景,茫茫宇宙,只要有物质,到处有引力辐射。

    测量工具/引力波 编辑

    LIGO和GEO 600是用来测量引力波即时空结构中的波动的工具。引力波非常难以测量,因为当他们到达地球的时候已经变得非常弱了。

    LIGO和GEO 600通过测量两条激光束相遇的时候所形成的干涉图样的变化来探测引力波。这些图样依赖于激光束的传播距离,当引力波穿过时激光束的传播距离会相应变化。

    这种称之为激光干涉计的探测器的灵敏度,是与激光传播的距离成比例的。因为探测器需要寻找的是很微弱的信号,所以需要LIGO和GEO的尺寸相当大。

    研究突破/引力波 编辑

    引力波是宇宙从大爆炸中诞生后紧接着瞬间的极度混沌中产生的,就像宇宙初生时发出的“啼哭”声。爱因斯坦在广义相对论中预言了引力波的存在,科学界一百多年来一直苦苦探寻引力波。一个国际科研小组在2009年8月20日出版的新一期《自然》杂志上报告说,他们终于锁定了引力波的探测范围。

    这个科研团队利用位于美国的“激光干涉引力波观测台”,成功地锁定了引力波的“出没范围”,显示其能量值比原有推测值要小很多。他们预计,探测仪器的灵敏度到2014年可提高1000倍,到时极有可能直接观测到引力波。

    研究人员说,他们的研究成果是寻找引力波过程中“第一次有意义的实验进展”,如果真能在近期探测到引力波,将极大推动对宇宙诞生和时空本质的理解。正缘于此,全球科学家都积极投入到这项工作中。在《自然》杂志发表的这篇论文中,作者列表不是通常的几个或十几个人名,而是遍布全球的79所大学、实验室和研究机构。

    时空理论/引力波 编辑

    捕捉引力波捕捉引力波

    在欧洲引力波探测计划中,科学家在德国汉诺威的GEO600引力波观测站和意大利比萨的处女座(Virgo)引力波探测器处使用陆基引力波天线。德国汉诺威的GEO600引力波观测站的干涉仪臂长达600米,是德英联合项目;而处女座引力波探测器臂长更是达到3000米,是意大利、法国、波兰、匈牙利四个国家联合研究的项目。

    根据相对论可知,高速运动的物体和宇宙中大质量的天体碰撞都会产生极强的引力波, 当这些引力波传到地球上时会变得微乎其微,因此地球需要极高灵敏度的引力波观测站来探测引力波。引力波

    科学家用激光干涉仪来探测引力波,这种仪器得机构由两条互相垂直的长臂组成,长臂的两端挂有两面高反射率的镜子,激光打入到仪器长臂后,从而激光束在镜子之间来回反射。而科学家对此进行由于光程差引起的微小变化的检测,这个微小变化仅仅有质子直径大小。

    此外,对引力波的检测需要极其高的技术条件:比如隔离真空、隔离振动等。隔离振动包括外部环境致使的振动和内部设备引起的振动。

    引力波监测需要多个地面站同时工作,这些地面站的探测装置都是相同的,这样可以最大程度上来减小仪器测试产生的误差;而在监测过程中,必须同时接收同样的信号,这样可以避免受到地面信号源的干扰,从而保证引力波信号源的探测的精准性。

    德国马克斯普朗克引力物理研究所、德国汉诺威莱布尼兹大学的哈特穆·特格罗特博士通过监测比较认为: GEO600引力波观测站和Virgo引力波探测器在600HZ以上的中/高频波段的灵敏度十分相似。这对科学家来说是一件非常有趣的事,科学家可以通过此波段寻找超新星爆炸所产生的引力波,并在此基础上进行监测,可以节省时间和提高监测效率。

    伽马射线是最强的引力波来源之一,而中子星或黑洞也都是引力波极佳的探测源。不过即使是中子星或黑洞碰撞所传到地球的引力波信号也非常微弱,因而能监测到的概率非常小。

    宇宙暴涨/引力波 编辑

    引力波引力波

    宇宙暴涨理论指出,在早期宇宙有一段持续时间非常短的快速膨胀的过程,该理论能够解释宇宙大爆炸理论(Big bang theory)所不能解释的一些难题。例如,当今宇宙为何呈现出高度的各项同性(均匀)。

    引力波2014年3月,美国哈弗·史密松天体物理中心的科学家宣布,他们已经找到了宇宙早期“暴涨”阶段产生引力波的第一个证据,这也是对宇宙暴涨理论(cosmic inflation theories)最强的验证。这是人类科学上的重大突破,该成就有望问鼎诺贝尔奖。

    这项重大发现来自于位于南极的“BICEP2”望远镜,该望远镜能够对宇宙微波背景辐射(CMB)进行观测。宇宙微波背景辐射是宇宙大爆炸的余晖,辐射中的微小涨落提供了早期宇宙状况的信息。

    当引力波传播时它能够对空间挤压和拉伸,这种影响能够在宇宙背景微波辐射中产生特殊的图案。因为微波背景辐射也是一种光线,也具备光的所有性质,包括偏振。科学家寻找到的是一种称为“B-模”的特殊偏振形式,它的出现是引力波存在的独特标记。

    为了排除可能出现的误差,研究团队用了三年多的时间对数据进行分析。他们这次探测到的宇宙背景辐射中的“B-模”比之前科学家预测的都更加显著。该结果不仅仅能告诉我们宇宙确实发生过暴涨阶段,还能告诉我们它是何时发生和强度多大。

    传播速度/引力波 编辑

    中新社北京12月26日电 (记者 孙自法)经过10多年的持续探索,中国科学家在世界上成功获得“引力场以光速传播”的第一个观测证据。这项原始创新成果,实现了物理学界多年来对通过实验或观测获得引力场传播速度的期待,对引力场的理论和实验研究具有重要意义。

    中国科学院地质与地球物理研究所26日下午在北京对外宣布,由该所汤克云研究员领衔、中国地震局和中国科学院大学有关科研人员组成的科学团组,经过10多年的持续探索,在实施多次日食期间的固体潮观测后,发现现行地球固体潮公式实际上暗含着引力场以光速传播的假定,从而提出用固体潮测量引力传播速度的方法。

    汤克云科学团组先后实施1997年漠河日全食观测、2001年赞比亚日全食观测、2002年澳大利亚日全食观测、2008年嘉峪关日全食观测、2009年上海-杭州-湖州日全食观测和2010年云南大理日环食观测,主要是重力固体潮观测。

    中国科学家们观测研究发现:现今固体潮理论公式中隐含着引力场以光速传播的假定,进而导出引力传播速度方程,并找到求解引力场速度的有效方法。汤克云科学团组随后选择远离太平洋、大西洋、印度洋和北冰洋的西藏狮泉河站和新疆乌什站的固体潮数据作相关校正后,代入引力传播速度方程,最终获得全球“引力场以光速传播”的第一个观测证据。

    专家介绍说,牛顿的万有引力定律表明,引力传播是一种超距作用,引力可以在瞬间传播至任意远处,爱因斯坦则认为牛顿的超距作用应该放弃。一直以来,整个物理学界都在期待着通过实验或观测获得引力场传播的速度,但此前均未找到正确的实验或观测方法。

    探测器很可能遭遇引力波“短脉冲”,这是由于两颗恒星或者两个黑洞彼此环绕形成的。舒茨发表声明说:“增加新引力波探测器的有效性远大于改善现有投资成本,最新部署的探测器已于2010年获得批准通过,将额外增强灵敏性和可靠性,增大天空探测覆盖率。不仅我们能够获得更大范围的探测性,我们还将以其它方式研究中子星和伽马射线暴的更多信息。”

    爱因斯坦的广义相对论描述具有质量的物体如何在时空环境下弯曲,可形象地形容为提供一张紧绷的床单,然后将足球放在床单中心,具有质量的物体在时空下发生的弯曲,犹如足球周围出现褶皱的床单。

    它就像湖面上泛成的波纹,由加速物体导致的时空环境失真将逐渐衰减,因此,当它们抵达地球范围,则非常难以被探测到,但不是不可能探测到。舒茨说:“在我的意识中,探测引力波将打开调查宇宙的新途径,我们期望能从合并黑洞中频繁地探测到引力波,这里的引力波将携带真实可靠的信息。由于引力波是黑洞喷射的唯一放射线,我们将首次直接观测到黑洞。”

    引力波将帮助研究人员探测其它神秘而强大的宇宙事件,施茨说:“引力波具有很强的穿透能力,因此它们可使我们直接观测到超新星爆炸、伽马射线暴和其它大量宇宙隐藏秘密的更多信息。”

    当前4个引力波探测器中的3个是激光干涉引力波(LIGO)勘测计划的一部分,两个探测器部署在华盛顿州汉福德市,一个探测器部署在路易斯安那州利文斯顿市。另外一个探测器位于意大利Cascina地区,是VIRGO计划的一部分。

    探测发展/引力波 编辑

    美国科学家2014年3月17日首次直接探测到宇宙大爆炸第一波震荡,即原始引力波。

    2016年2月11日23点30分,物理学家宣布人类首次直接探测到引力波。

    2016年6月16日凌晨,LIGO合作组宣布:2015年12月26日03:38:53 (UTC),位于美国汉福德区和路易斯安那州的利文斯顿的两台引力波探测器同时探测到了一个引力波信号;这是继 LIGO 2015年9月14日探测到首个引力波信号之后,人类探测到的第二个引力波信号。

    这次所发布的内容可以简单归纳为如下三点:

    (1)此次的两个引力波信号又都是来自于双黑洞的合并:一个确认信号,另外一个疑似信号。

    (2)此次的信号依旧是美国的aLIGO探测到的。但是VIRGO引力波探测器升级即将完成,今年秋季就开始和LIGO进行联合观测。

    (3)引力波和多信使(多个信息渠道,比如电磁波,引力波,中微子等;multi-messenger)天文学已被开启。

    发现意义/引力波 编辑

    引力波的发现验证了广义相对论最后一个未被实验直接检测的预言,但引力波带来的认知革命绝不止步于此。引力波为我们打开了除电磁辐射(光学、红外、射电、X射线等)、粒子(中微子、宇宙线)之外,一个全新的窗口——我们从未能够以这样的方式观察宇宙。在引力波这个新窗口中,我们不再是以电磁场、物质粒子作为观察宇宙的凭借——我们感受的,是时空本身的颤动!

    LIGO的直接探测到的第一例引力波事件(据说)来自两个恒星质量黑洞的并合。两个黑洞并合前,会在与彼此的绕转中搅动周围的时空,向四周散发出涟漪般的引力波。这些引力波带走了一部分双黑洞系统的引力势能,让两个黑洞越绕越近、越近越快。而两个黑洞最终并合之后,融合成的大黑洞会经过几下“摇摆”,才会融成完美的球形。

    能量来源/引力波 编辑

    广义相对论预言下的引力波来自于宇宙间带有强引力场的天文学或宇宙学波源,作为以波动形式和有限速度传播的引力场。按照广义相对论,加速运动的质量会产生引力波。包括银河系内的双星系统(白矮星、中子星或黑洞等致密星体组成的双星),河外星系内的超大质量黑洞的合并,脉冲星的自转,超新星的引力坍缩,大爆炸留下的背景辐射等等。

    爱因斯坦的广义相对论描述具有质量的物体如何在时空环境下弯曲,可形象地形容为提供一张紧绷的床单,然后将足球放在床单中心,具有质量的物体在时空下发生的弯曲,犹如足球周围出现褶皱的床单。但它也像湖面上泛成的波纹,由加速物体导致的时空环境失真将逐渐衰减,因此,当它们抵达地球范围,则非常难以被探测到,但不是不可能探测到。舒茨说:“在我的意识中,探测引力波将打开调查宇宙的新途径,我们期望能从合并黑洞中频繁地探测到引力波,这里的引力波将携带真实可靠的信息。由于引力波是黑洞喷射的唯一放射线,我们将首次直接观测到黑洞。”

    历史发展/引力波 编辑

    间接探寻

    20世纪60年代,马里兰大学的物理学家韦伯(Joseph Weber)首先提出了一种共振型引力波探测器。该探测

    韦伯教授在调试他的引力波探测器(1965年)由多层铝筒构成,直径1米,长2米,质量约1000千克,用细丝悬挂起来。当引力波经过圆柱时,圆柱会发生共振,进而可以通过安装在圆柱周围的压电传感器检测到。韦伯曾经在相距1000千米的两个地方同时放置了相同的探测器,只有两个探测器同时检测到相同的信号才被记录下来。1968年,韦伯宣称他探测到了引力波,立刻引起了学界的轰动,但是后来的重复实验都一无所获。

    虽然引力辐射并未被清清楚楚地“直接”测到,然而已有显著的“间接”证据支持它的存在。最著名的是对于脉冲星(或称波霎)双星系统PSR1913+16的观测。这系统被认为具有两颗中子星,以极其紧密而快速的模式互相环绕对方。其并且呈现了渐进式的旋近(in-spiral),旋近时率恰好是广义相对论所预期的值。根据广义相对论,该双星系统会以引力波的形式损失能量,轨道周期每年缩短76.5微秒,轨道半长轴每年减少3.5米,预计大约经过3亿年后发生合并。对于这样的观测,最简单(也几乎是广为接受)的解释为:广义相对论一定是对这种系统的重力辐射给出了准引力波确的说明才得以如此。

    用激光干涉方法或许可以探测这个双星系统的引力波。自1974年,泰勒(Joseph Hooton Taylor)和赫尔斯(Russell Alan Hulse)和对这个双星系统的轨道进行了长时间的观测,在1980年,他们也是采用精密的射电仪器,由实验行到观察值为(3.2±0.01)×10 ^-12,与理论计算值在误差范围内正好符合。这可以说是引力波的第一个定量证据。泰勒和赫尔斯也因这项工作于1993年荣获诺贝尔物理学奖。

    2012年12月,中国科学院地质与地球物理研究所汤克云研究员领衔的科学组,在实施多次日食期间的固体潮观测后,发现现行地球固体潮公式实际上暗含着引力场以光速传播的假定,从而提出用固体潮测量引力传播速度的方法。最终获得全球“引力场以光速传播”的第一个观测证据。

    精确测量

    1991年,麻省理工学院与加州理工学院在美国国家科学基金会(NSF)的资助下,开始联合建设“激光干涉引力波天文台”(LIGO)。LIGO的主要部分是两个互相垂直的干涉臂,臂长均为4000米。在两臂交会处,从激光光源发出的光束被一分为二,分别进入互相垂直并保持超真空状态的两空心圆柱体内,然后被终端的镜面反射回原出发点,并在那里发生干涉。若有引力波通过,便会引起时空变形,一臂的长度会略为变长而另一臂的长度则略为缩短,这样就会造成光程差发生变化,因此激光干涉条纹就会发生相应的变化。

    LIGO从 2003 年开始收集数据。它是全世界最大的、灵敏度最高的引力波探测所。而全世界共有4个引力波探测器,两个探测器部署在华盛顿州汉福德市,一个探测器部署在路易斯安那州利文斯顿市。另外一个探测器位于意大利Cascina地区,是VIRGO计划的一部分。

    这两套 LIGO 干涉仪在一起工作构成一个观测所。这是因为激光强度的微小变化、微弱地震和其它干扰都可能看起来像引力波信号,如果是此类干扰信号,其记录将只出现在一台干涉仪中,而真正的引力波信号则会被两台干涉仪同时记录。此外,对引力波的检测需要极其高的技术条件:比如隔离真空、隔离振动等。隔离振动包括外部环境致使的振动和内部设备引起的振动。所以,科学家可以对二个地点所记录的数据进行比较得知哪个信号是噪声。

    直接探测

    2016年2月11日,LIGO宣布,于2015年9月14日首次探测到引力波,证实了爱因斯坦100年前所做的预测,直接探测到引力波的存在,弥补了爱因斯坦广义相对论实验验证中最后一块缺失的“拼图”。科学家花费数个月时间验证数据并通过审查程序,才宣布这个讯息,标志着全球各地研究团队数十年努力的最高潮。

    2016年6月16日凌晨,LIGO合作组宣布:2015年12月26日03:38:53 (UTC),位于美国汉福德区和路易斯安那州的利文斯顿的两台引力波探测器同时探测到了一个引力波信号;这是继 LIGO 2015年9月14日探测到首个引力波信号之后,人类探测到的第二个引力波信号 。[1]

    2017年10月16日,全球多国科学家同步举行新闻发布会,宣布人类第一次直接探测到来自双中子星合并的引力波,并同时“看到”这一壮观宇宙事件发出的电磁信号。[2]

    能量性质/引力波 编辑

    宇宙暴涨理论宇宙暴涨理论
    引力波是横波,在远源处为平面波;有两个独立的偏振态;携带能量等。引力波携带能量,应可被探测到。

    但引力波的强度很弱,而且,物质对引力波的吸收效率极低,直接探测引力波极为困难。曾有人宣称在实验室里探测到了引力波,但未得到公认。天文学家通过观测双星轨道参数的变化来间接验证引力波的存在 。例如,双星体系公转、中子星自转、超新星爆发,及理论预言的黑洞的形成、碰撞和捕获物质等过程,都能辐射较强的引力波。我们所预期在地球上可观测到的最强引力波会来自很远且古老的事件,在这事件中大量的能量发生剧烈移动(例子包括两颗中子星的对撞,或两个极重的黑洞对撞)。这样的波动会造成地球上各处相对距离的变动,但这些变动的数量级应该顶多只有10^-21。以LIGO引力波侦测器的双臂而言,这样的变化小于一颗质子直径的千分之一。

    观测意义/引力波 编辑

    宇宙大爆炸理论-内部结构模型图宇宙大爆炸理论-内部结构模型图
    引力波的观测意义不仅在于对广义相对论的直接验证,更在于它能够提供一个观测宇宙的新途径,就像观测天文学从可见光天文学扩展到全波段天文学那样极大扩展人类的视野。英国天文物理学大师霍金表示,他相信这是科学史上重要的一刻。“引力波提供看待宇宙的崭新方式,发现它们的能力,有可能使天文学起革命性的变化。这项发现是首度发现黑洞的二元系统,是首度观察到黑洞融合。

    传统的观测天文学完全依靠对电磁辐射的探测,而引力波天文学的出现则标志着观测手段已经开始超越电磁相互作用的范畴,引力波观测将揭示关于恒星、星系以及宇宙更多前所未知的信息。

    因为引力波直接联系着波源整体的宏观运动,而非如电磁波那样来自单个原子或电子的运动的叠加,因此引力辐射所揭示的信息与电磁辐射观测到的完全不同。例如对一个双星系统观测到的引力波的偏振揭示了其双星轨道的倾斜度,这类关于波源运动的宏观信息通常无法从电磁辐射观测中取得。

    如果比较波长与波源尺寸的关系,宇宙间的引力波并不像电磁波那样波长比波源尺寸小很多,这使得引力波天文学通常不能像电磁波天文学那样对波源进行拍照成相,而是类似声波直接从波形分析波源的性质。大多数引力波源很难或根本无法通过电磁辐射直接观测到(例如黑洞),这个事实反过来也成立;考虑到一般认为宇宙间不发射任何电磁波的暗物质所占比例要远大于发射电磁波的已知物质,暗物质与外界的唯一相互作用即是引力相互作用,引力波天文学对这些暗物质的观测具有重要意义。

    引力波与物质的相互作用非常弱,在传播途径中基本不会像电磁波那样容易发生衰减或散射,这意味着它们可以揭示一些宇宙角落深处的信息,例如宇宙诞生时形成的引力辐射至今仍然在宇宙间几乎无衰减地传播,这为直接观测大爆炸提供了仅有的可能。

    荣誉/引力波 编辑

    2016年12月22日,美国《科学》杂志公布了其评选的2016年十大科学突破,有“时空涟漪”之称的引力波被发现当选2016年头号突破。
    2017年,莱纳·魏斯、巴里·巴利许与基普·索恩因成功探测到引力波,而获得诺贝尔物理学奖。[3]

    相关文献

    添加视频 | 添加图册相关影像

    参考资料
    [1]^引用日期:2016-08-11
    [2]^引用日期:2017-10-17
    [3]^引用日期:2017-10-17

    互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于www.baike.com。

    登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。

    互动百科用户登录注册
    此词条还可添加  信息模块

    WIKI热度

    1. 编辑次数:65次 历史版本
    2. 参与编辑人数:32
    3. 最近更新时间:2017-10-24 15:25:18