• 正在加载中...
  • 波粒二象性

    波粒二象性(wave-particleduality)是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了人们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。

    编辑摘要

    基本信息 编辑信息模块

    中文名: 波粒二象性 英文名: wave-particle duality
    属于: 物理学

    目录

    简介/波粒二象性 编辑

    波粒二象性波粒二象性

    波粒二象性(英语:Wave-particle duality)是微观粒子的基本属性之一。指微观粒子有时显示出波动性(这时粒子性不显著),有时又显示出粒子性(这时波动性不显著),在不同条件下分别表现为波动和粒子的性质。一切微观粒子都具有波粒二象性。





    数学关系/波粒二象性 编辑

    “波”和“粒子”的数学关系
    物质的粒子性由能量E和动量p刻划,波的特征则由电磁波频率ν和其波长λ表达,这两组物理量的比例因子由普朗克常数h(h=6.626*10^-34J·s)所联系。

    E=hv,E=mc^2联立两式,得:m=hv/c^2(这是光子的相对论质量,由于光子无法静止,因此光子无静质量)而p=mc,则p=hv/c(p为

    光子之波粒二象性-内部结构模型图光子之波粒二象性-内部结构模型图[1]

    历史演变/波粒二象性 编辑

    波粒二象性波粒二象性

    在十九世纪末,日臻成熟的原子理论逐渐盛行,根据原子理论的看法,物质都是由微小的粒子—原子 构成。比如原本被认为是一种流体的电,由汤普孙 的阴极射线实验证明是由被称为电子的粒子所组成。因此,人们认为大多数的物质是由粒子所组成。而与此同时,波被认为是物质的另一种存在方式。波动理论已经被相当深入地研究,包括干涉和衍射等现象。由于光在托马斯·杨的双缝干涉实验中,以及夫琅和费衍射中所展现的特性,明显地说明它是一种波动。

    不过在二十世纪来临之时,这个观点面临了一些挑战。1905年由阿尔伯特·爱因斯坦 研究的光电效应展示了光粒子性的一面。随后,电子衍射被预言和证实了。这又展现了原来被认为是粒子的电子波动性的一面。这个波与粒子的困扰终于在二十世纪初由量子力学的建立所解决,即所谓波粒二象性。它提供了一个理论框架,使得任何物质在一定的环境下都能够表现出这两种性质。量子力学认为自然界所有的粒子 ,如光子、电子 或是原子,都能用一个微分方程,如薛定谔方程来描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,即,它们能够像波一样互相干涉和衍射。同时,波函数也被解释为描述粒子出现在特定位置的几率幅。这样,粒子性和波动性就统一在同一个解释中。

    粒子性和波动性之统一:模型图粒子性和波动性之统一:模型图[2]

    之所以在日常生活中观察不到物体的波动性 ,是因为他们的质量太大,导致特征波长比可观察的限度要小很多,因此可能发生波动性质的尺度在日常生活经验范围之外。这也是为什么经典力学能够令人满意地解释“自然现象”。反之,对于基本粒子来说,它们的质量和尺度决定了它们的行为主要是由量子力学所描述的,因而与我们所习惯的图景相差甚远。

    早期光理论

    惠更斯和牛顿的早期光理论

    波粒二象性波粒二象性
    最早的综合光理论是由克里斯蒂安·惠更斯 所发展的,他提出了一个光的波动理论,解释了光波如何形成波前,直线传播。该理论也能很好地解释折射现象。但是,该理论在另一些方面遇见了困难。因而它很快就被艾萨克·牛顿 的粒子理论所超越。牛顿认为光是由微小粒子所组成,这样他能够很自然地解释反射现象。并且,他也能稍显麻烦地解释透镜的折射现象,以及通过三棱镜将阳光分解为彩虹。

    由于牛顿无与伦比的学术地位,他的理论在一个多世纪内无人敢于挑战,而惠更斯的理论则渐渐为人淡忘。直到十九世纪初衍射现象被发现,光的波动理论才重新得到承认。而光的波动性与粒子性的争论从未平息。

    费涅尔、麦克斯韦和杨光理论
    十九世纪早期由托马斯·杨 和奥古斯丁,让·费涅尔所演示的双缝干涉实验为惠更斯的理论提供了实验依据:这些实验显示,当光穿过网格时,可以观察到一个干涉样式,与水波 的干涉行为十分相似。并且,通过这些样式可以计算出光的波长。詹姆斯·克拉克·麦克斯韦在世纪末叶给出了一组方程,揭示了电磁波的性质。而方程得到的结果,电磁波的传播速度就是光速,这使得光作为电磁波 的解释被人广泛接受,而惠更斯的理论也得到了重新认可。

    爱因斯坦和光子

    波粒二象性波粒二象性
    1905年,爱因斯坦对光电效应提出了一个理论,解决了之前光的波动理论所无法解释的这个实验现象。他引入了光子,一个携带光能的量子的概念。在光电效应 中,人们观察到将一束光线照射在某些金属上会在电路中产生一定的电流。可以推断是光将金属中的电子打出,使得它们流动。然而,人们同时观察到,对于某些材料,即使一束微弱的蓝光也能产生电流 ,但是无论多么强的红光都无法在其中引出电流。根据波动理论 ,光强对应于它所携带的能量,因而强光一定能提供更强的能量将电子击出。然而事实与预期的恰巧相反。

    爱因斯坦将其解释为量子化效应:电子被光子击出金属,每一个光子都带有一部分能量E,这份能量对应于光的频率ν:E=hν,这里h是普朗克常数(6.626x10^-34Js)。光束的颜色决定于光子的频率,而光强则决定于光子的数量。由于量子化效应,每个电子只能整份地接受光子的能量 ,因此,只有高频率的光子(蓝光,而非红光)才有能力将电子击出。爱因斯坦因为他的光电效应理论获得了1921年诺贝尔物理学奖

    光电效应方程
    由于E=hv,这光照射到原子上,其中电子吸收一份能量,从而克服逸出功,逃出原子。电子所具有的动能Ek=hv-W,W为电子逃出原子所需的逸出功。这就是爱因斯坦的光电效应方程

    德布罗意假设

    波粒二象性波粒二象性
    1924年,路易-维克多?德?布罗意注意到原子中电子的稳定运动需要引入整数来描写,与物理学中其他涉及整数的现象如干涉和振动简正模式之间的类似性,构造了德布罗意假设 ,提出正如光具有波粒二象性一样,实物粒子也具有波粒二象性。他将这个波长λ和动量p联系为:λ=h/p。

    这是对爱因斯坦等式的一般化,因为光子的动量为p=E/c(c为真空中的光速),而λ=c/ν。德布罗意的方程通过两个独立的电子散射实验被证实于电子(具有静止质量 )身上。在贝尔实验室ClintonJosephDavisson和LesterHalbertGermer以低速电子束射向镍单晶获得电子经单晶衍射 ,测得电子的波长与德布罗意公式一致。在阿伯丁大学,GeorgePagetThomson以高速电子穿过多晶金属箔获得类似X射线在多晶上产生的衍射花纹 ,确凿证实了电子的波动性;以后又有其他实验观测到氦原子 、氢分子以及中子的衍射现象,微观粒子的波动性已被广泛地证实。根据微观粒子波动性发展起来的电子显微镜 、电子衍射技术和中子衍射技术已成为探测物质微观结构和晶体结构分析的有力手段。

    德布罗意于1929年因为这个假设获得了诺贝尔物理学奖。Thomson和Davisson因为他们的实验工作共享了1937年诺贝尔物理学奖。光和微观粒子的波粒二象性如何统一的问题是人类认识史上最令人困惑的问题,至今不能说问题已经完全解决。1926年M.玻恩提出概率波解释,较好地解决了这个问题。按照概率波解释,描述粒子波动性所用的波函数Ψ(x、y、z、t)是概率波,而不是什么具体的物质波;波函数的绝对值的平方|ψ|2=ψ*ψ表示时刻t在x、y、z处出现的粒子的概率密度 ,ψ*表示ψ的共轭波函 。在电子通过双孔的干涉实验 中,|ψ|2=|ψ1+ψ2|2=|ψ1|2+|ψ2|2+ψ1*ψ2+ψ1ψ2*,强度|ψ|2大的地方出现粒子的概率大,相应的粒子数多,强度弱的地方,|ψ|2小,出现粒子的概率小,相应的粒子数少,ψ1*ψ2+ψ1ψ2*正是反映干涉效应的项,不管实验是在粒子流强度大的条件下做的,还是粒子流 很弱,让粒子一个一个地射入,多次重复实验 ,两者所得的干涉条纹结果是相同的。

    在粒子流很弱、粒子一个一个地射入多次重复实验中显示的干涉效应表明,微观粒子的波动性不是大量粒子聚集的性质,单个粒子即具有波动性。于是,一方面粒子是不可分割的,另一方面在双孔实验中双孔又是同时起作用的,因此,对于微观粒子谈论它的运动轨道 是没有意义的。由于微观粒子具有波粒二象性,微观粒子所遵从的运动规律不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观 物体运动规律的经典力学。

    薛定谔方程
    波粒二象性波粒二象性
    量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。薛定谔方程仅适用于速度不太大的非相对论 粒子,其中也没有包含关于粒子自旋的描述。当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。

    薛定谔提出的量子力学基本方程。建立于1926年。它是一个非相对论的波动方程。它反映了描述微观 粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数 为Ψ(r,t),质量为m的微观粒子在势场U(r,t)中运动的薛定谔方程为。在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。当势函数U不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量 ,Ψ(r)又称为属于本征值E的本征函数。

    量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体 等一系列问题中求解的结果都与实际符合得很好。薛定谔方程 仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。[3]


    爱因斯坦/波粒二象性 编辑

    1905年,爱因斯坦对光电效应提出了一个理论,解决了之前光的波动理论所无法解释的这个实验现象。他引入了光子,一个携带光能的量子的概念。

    在光电效应中,人们观察到将一束光线照射在某些金属上会在电路中产生一定的电流。可以推断是光将金属中的电子打出,使得它们流动。然而,人们同时观察到,对于某些材料,即使一束微弱的蓝光也能产生电流,但是无论多么强的红光都无法在其中引出电流。根据波动理论,光强对应于它所携带的能量,因而强光一定能提供更强的能量将电子击出。然而事实与预期的恰巧相反。

    爱因斯坦将其解释为量子化效应:金属被光子击出电子,每一个光子都带有一部分能量E,这份能量对应于光的频率ν:E=hν,这里h是普朗克常数(6.626 x 10^-34 J s)。光束的颜色决定于光子的频率,而光强则决定于光子的数量。由于量子化效应,每个电子只能整份地接受光子的能量,因此,只有高频率的光子(蓝光,而非红光)才有能力将电子击出。

    爱因斯坦因为他的光电效应理论获得了1921年诺贝尔物理学奖。

    效应方程/波粒二象性 编辑

    由于E=hv,这光照射到原子上,其中电子吸收一份能量,从而克服逸出功,逃出原子。电子所具有的动能Ek=hv-Wo,Wo为电子逃出原子所需的逸出功。这就是爱因斯坦的光电效应方程。

    h即普朗克常数用以描述量子大小。在量子力学中占有重要的角色,马克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和试验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常数乘以辐射电磁波的频率。

    数值约为:h=6.6260693(11)×10^(-34) J·s。[经化简为:h=6.63×10^(-34)J·s)

    其中为能量单位为焦(J)。

    若以电子伏特(eV)·秒(s)为能量单位则为h=4.13566743(35)×10^(-15) eV·s 普朗克常数的物理单位为能量乘上时间,也可视为动量乘上位移量:{牛顿(N)·米(m)·秒(s)}为角动量单位由于计算角动量时要常用到h/2π这个数,为避免反复写 2π 这个数,因此引用另一个常用的量为约化普朗克常数(reduced Planck constant),有时称为狄拉克常数(Dirac constant),纪念保罗·狄拉克:h(这个h上有一条斜杠)=h/2π约化普朗克常量(又称合理化普朗克常量)是角动量的最小衡量单位。其中 π 为圆周率常数 pai, h(这个h上有一条斜杠)念为 "h-bar" 。普朗克常数用以描述量子化,微观下的粒子,例如电子及光子,在一确定的物理性质下具有一连续范围内的可能数值。例如,一束具有固定频率 ν 的光,其能量 E 可为:有时使用角频率 ω=2πν :许多物理量可以量子化。譬如角动量量子化。 J 为一个具有旋转不变量的系统全部的角动量, Jz 为沿某特定方向上所测得的角动量。其值:因此, 可称为 "角动量量子"。

    普朗克常数也使用于海森堡不确定原理。在位移测量上的不确定量(标准差) Δx ,和同方向在动量测量上的不确定量 Δp,有一定关系。还有其他组物理测量量依循这样的关系,例如能量和时间。

    假设/波粒二象性 编辑

    爱因斯坦提出光的粒子性后,路易·维克多·德布罗意做了逆向思考,他在论文中写到:19世纪以来,只注重了光的波动性的研究,而忽略了粒子性的研究,在实物粒子的研究方面,是否犯了相反的错误呢?1924年,他又注意到原子中电子的稳定运动需要引入整数来描写,与物理学中其他涉及整数的现象如干涉和振动简正模式之间的类似性,由此构造了德布罗意假设,提出正如光具有波粒二象性一样,实物粒子也具有波粒二象性。他将这个波长λ和动量p联系为:λ=h/p=h/mv

    m:质量v:频率h:普朗克常数

    这是对爱因斯坦等式的一般化,因为光子的动量为p = E / c(c为真空中的光速),而λ = c / ν。

    德布罗意的方程三年后通过两个独立的电子散射实验被证实。在贝尔实验室Clinton Joseph Davisson和Lester Halbert Germer以低速电子束射向镍单晶获得电子经单晶衍射,测得电子的波长与德布罗意公式一致。在阿伯丁大学,G·P汤姆孙以高速电子穿过多晶金属箔获得类似X射线在多晶上产生的衍射花纹,确凿证实了电子的波动性;以后又有其他实验观测到氦原子、氢分子以及中子的衍射现象,微观粒子的波动性已被广泛地证实。根据微观粒子波动性发展起来的电子显微镜、电子衍射技术和中子衍射技术已成为探测物质微观结构和晶体结构分析的有力手段。

    德布罗意于1929年因为这个假设获得了诺贝尔物理学奖。汤姆孙和戴维逊因为他们的实验工作共享了1937年诺贝尔物理学奖。

    概率波/波粒二象性 编辑

    光和微观粒子的波粒二象性如何统一的问题是人类认识史上最令人困惑的问题 ,至今不能说问题已经完全解决【卢瑟福的α粒子散射实验证明物质的结构是核式的(这种模型被称为核式结构模型),原子如此,光子、电子、质子、大到天体都有自己的核心,都有绕核心运动的物质存在,每个核式结构体在运动中由于核式结构的特点,都做具有波动的直线运动,都有测不准的因素(不确定性原理)存在,都有量子化的物理特征,各有能级的存在,各有特定的能量吸收才可以发生跃迁。】1926年M.玻恩提出概率波解释,较好地解决了这个问题。按照概率波解释,描述粒子波动性所用的波函数Ψ(x、y、z、t)是概率波,而不是什么具体的物质波;波函数的绝对值的平方|ψ|2=ψ*ψ表示时刻t在x、y、z处出现的粒子的概率密度,ψ*表示ψ 的共轭波函数。在电子通过双孔的干涉实验中,|ψ|2=|ψ1+ψ2|2=|ψ1|2+|ψ2|2+ψ1*ψ2+ψ1ψ2*,强度|ψ|2大的地方出现粒子的概率大 ,相应的粒子数多,强度弱的地方,|ψ|2小 ,出现粒子的概率小,相应的粒子数少,ψ1*ψ2+ψ1ψ2*正是反映干涉效应的项,不管实验是在粒子流强度大的条件下做的,还是粒子流很弱,让粒子一个一个地射入,多次重复实验,两者所得的干涉条纹结果是相同的。

    在粒子流很弱、粒子一个一个地射入多次重复实验中显示的干涉效应表明,微观粒子的波动性不是大量粒子聚集的性质,单个粒子即具有波动性。于是,一方面粒子是不可分割的,另一方面在双孔实验中双孔又是同时起作用的,因此,对于微观粒子谈论它的运动轨道是没有意义的。

    由于微观粒子具有波粒二象性,微观粒子所遵从的运动规律不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。

    方程/波粒二象性 编辑

    量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。

    薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。

    薛定谔提出的量子力学基本方程 。建立于1926年。它是一个非相对论的波动方程。它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场U(r,t)中运动的薛定谔方程为。在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。

    当势函数U不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量,Ψ(r)又称为属于本征值E的本征函数。

    相关文献

    添加视频 | 添加图册相关影像

    参考资料
    [1]^引用日期:2013-07-08
    [2]^引用日期:2013-07-08
    [3]^引用日期:2012-11-08

    互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于www.baike.com。

    登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。

    互动百科用户登录注册
    此词条还可添加  信息模块

    WIKI热度

    1. 编辑次数:27次 历史版本
    2. 参与编辑人数:18
    3. 最近更新时间:2015-03-10 15:39:01

    互动百科

    扫码下载APP