• 正在加载中...
  • 示波器

    示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压电流、频率、相位差、调幅度等等以图像形式在阴极射线管荧光屏上显示两个或两个以上参数间的函数关系的电子测量仪器。示波器根据对不同时域测量的要求有通用示波器、存储示波器和取样示波器三类。

    编辑摘要

    基本信息 编辑信息模块

    中文名: 示波器 英文名: oscilloscope
    属性: 电子测量仪器 应用学科: 机械工程;电测量仪器仪表

    目录

    简介/示波器 编辑

    示波器示波器

    示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压电流频率相位差调幅度等等以图像形式在阴极射线管荧光屏上显示两个或两个以上参数间的函数关系的电子测量仪器。示波器根据对不同时域测量的要求有通用示波器、存储示波器和取样示波器三类。

    基本特点/示波器 编辑

    定义

    示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

    作用

    用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测

    分类及工作原理

    示波器分为数字示波器和模拟示波器
    模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。
    数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器一般支持多级菜单,能提供给用户多种选择,多种分析功能。还有一些示波器可以提供存储,实现对波形的保存和处理。
    示波器工作原理是[1]
    利用显示在示波器上的波形幅度的相对大小来反映加在示波器Y偏转极板上的电压最大值的相对大小,从而反映出电磁感应中所产生的交变电动势的最大值的大小。因此借助示波器可以研究感应电动势与其产生条件的关系。

    SDS1000DL示波器SDS1000DL示波器






    发展简况/示波器 编辑

    阴极射线管将电信号变成荧光屏上可见的图像,是电子技术中一项极其重要的发明。

    1879年,W.克鲁克斯利用磁场能使真空管中阴极射线偏转,以及荧光材料在电子束轰击下能发出荧光和光的原理制成了阴极射线管。

    1897年,K.F.布劳恩改进了克鲁克斯管,使电子束电流可控以改变光点的亮度,从而制成了实用的阴极射线管,如示波管、电视显像管等。示波器在电子测量仪器发展史中是影响最大、用途最广、生产品种最多的仪器,配上适当的非电量换能器后能测量和显示几乎一切物理量和动态过程。在电子测量仪器中,示波器是一种电信号的时域测量和分析仪器;它显示信号随时间变化的波形,是一种非常直观的波形分析器。第一台电子管示波器于1931年问世,随着晶体管、集成组件、超小型元件、器件和新型示波管的出现,现代示波器的性能和结构已有显著的改进。

    仪器特点/示波器 编辑

    显著优点
    ①非常直观,能将波形直接显示在荧光屏上,还可用照相方法取得永久性记录;

    ②量程大,可测量从高灵敏示波器的数微伏至高压示波器的数万伏的信号;

    ③输入阻抗高,对被测系统影响极小;

    ④反应迅速,电子束惰性极小,能显示纳秒级的快速过程;

    ⑤多信道,能在同一荧光屏上同时显示几个过程,便于观察、比较、测量和分析;

    ⑥耐过载能力强,能在恶劣环境下工作。

    性能指标
    示波器的主要性能指标是频率范围、灵敏度、信道数和存储功能。

    ①频率范围:指-3分贝时的上限、下限频率。一般示波器下限频率可达直流或很低频率,上限频率具有重要意义,它决定可显示的最快速过程。

    ②灵敏度:指偏转一格刻度(8~10毫米)所需的输入电压,目前常用示波器灵敏度可达每格1~10毫伏。

    ③信道数目:指同时在荧光屏显示的输入信道的数目,最常见的为1~4个信道。

    ④存储功能:所有示波器都可用来观察重复性(即周期性)波形,但是,如果周期很长或是单次快速过程,普通示波器在显示时会出现闪烁、过暗或捕捉不住等现象,存储示波器具有存储功能,能观察上述特殊波形。

    仪器分类/示波器 编辑

    通用示波器 

    示波器示波器

    通用示波器通常采用80毫米×100毫米矩形荧光屏带内刻度和后加速电极的示波管。时基发生器产生一电压随时间作线性变化的锯齿波,其重复频率在很大范围内可变,起始扫描时间受来自触发电路的触发脉冲控制。图中为双通道双踪示波器,利用电子开关将A、B通道的图像分别显示在荧光屏上。电子开关有两种工作模式:交替模式和断续模式。在交替工作模式时,电子开关受时基产生器控制,每次扫描开始时,电子开关立即转换,这种方式适合于观察变化较快的信号。在断续工作模式时,电子开关受方波振荡器(频率50千赫~1兆赫)控制,轮流接通 A和B通道,适用于观察慢变化信号。触发电路和时基发生器的动作都比触发信号有一定滞后。为了显示信号的前沿,在信号回路中加入一段延迟回路。早期示波器的时基发生器与图中的不同,没有触发回路,由输入信号直接与锯齿波发生器同步,时基发生器没有精确时间刻度。后来加入触发电路,使波形稳定,且扫描速度不受输入信号影响。这种示波器对观察脉冲信号特别方便,称为同步示波器。随着示波器的发展,频率上限不断提高。上限频率主要受放大器和示波管上限频率的限制,现代示波器已达到300~400兆赫,最高水平已达到1000兆赫。输入阻抗通常为1兆欧的电阻与30~50皮法的等效电容并联。高输入阻抗特别是低容抗有时对电路影响很大,且容易拾取干扰信号。用衰减器探头可提高输入容抗。探头用RC并联电路与示波器输入端串接。一般采用1/10的探头,输入阻抗约为10兆欧与10皮法并联,能防止干扰串入。现代示波器因有两路时基发生器,可交替扫描、交替触发,并有校正用方波发生器、聚焦调节和像差调节等电路,能对波形进行精密测量。

    存储示波器

    示波器示波器

    用通用示波器观察重复频率为几赫的波形时,荧光屏会严重地闪烁。补救的办法是采用长余辉示波管(余辉时间可长达1~3秒),这种办法虽很简单,但余辉时间不能随意调节,不适于观察高重复频率信号,而且普通示波器还不能观察单次过程。存储示波器又称记忆示波器,能将波形记忆下来,显示在荧光屏上。存储示波器采用特殊的阴极射线管,有栅网型和双稳态型荧光膜两类。存储示波管和普通示波管不同,它有写入电子枪和读出电子枪(见示波器)。栅网型示波管的优点是辉度连续可调,存储时间可从1小时到7天,可多次写入、一次读出。双稳态型存储示波管结构简单,存储时间可达1小时,价格低廉,缺点是双稳态缺乏中间色调,不能快速写入,荧光膜易烧毁。存储示波管比普通示波管昂贵、寿命短,将会被数字型存储示波器所取代。数字型存储示波器是集数字记录装置和普通示波器于一体,将集成组件的记忆存储器内容由示波器显示,其优点是可进行数据处理,示波管寿命长,不易烧毁。

    取样示波器 

    用抽样法将频率压缩,将快速重复的现象变成低速重复的现象,用普通示波器显示波形。取样示波器适用于观察周期性现象,其上限频率已达18吉赫。取样示波器的关键部分是用高速开关元件(如隧道二极管)组成的取样头。使用时输入信号电压应比普通示波器的电压低,以避免损坏取样头,同时须解决测量时的阻抗匹配问题,以减小波形失真。

    工作原理/示波器 编辑

    示波器示波器

    工作原理

    (一)示波器的组成普通示波器有五个基本组成部分:显示电路、垂直(Y轴)放大电路、水平(X轴)放大电路、扫描与同步电路、电源供给电路。普通示波器的原理功能方框图如图5-1所示。

    1.显示电路
    显示电路包括示波管及其控制电路两个部分。示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管的基本原理图如图所示。由图可见,示波管由电子枪、偏转系统和荧光屏3个部分组成。

    (1)电子枪
    电子枪用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。它主要由灯丝F、阴极K、控制极G、第一阳极A1、第二阳极A2组成。除灯丝外,其余电极的结构都为金属圆筒,且它们的轴心都保持在同一轴线上。阴极被加热后,可沿轴向发射电子;控制极相对阴极来说是负电位,改变电位可以改变通过控制极小孔的电子数目,也就是控制荧光屏上光点的亮度。为了提高屏上光点亮度,又不降低对电子束偏转的灵敏度,现代示波管中,在偏转系统和荧光屏之间还加上一个后加速电极A3。

    第一阳极对阴极而言加有约几百伏的正电压。在第二阳极上加有一个比第一阳极更高的正电压。穿过控制极小孔的电子束,在第一阳极和第二阳极高电位的作用下,得到加速,向荧光屏方向作高速运动。由于电荷的同性相斥,电子束会逐渐散开。通过第一阳极、第二阳极之间电场的聚焦作用,使电子重新聚集起来并交汇于一点。适当控制第一阳极和第二阳极之间电位差的大小,便能使焦点刚好落在荧光屏上,显现一个光亮细小的圆点。改变第一阳极和第二阳极之间的电位差,可起调节光点聚焦的作用,这就是示波器的“聚焦”和“辅助聚焦”调节的原理。第三阳极是示波管锥体内部涂上一层石墨形成的,通常加有很高的电压,它有三个作用:①使穿过偏转系统以后的电子进一步加速,使电子有足够的能量去轰击荧光屏,以获得足够的亮度;②石墨层涂在整个锥体上,能起到屏蔽作用;③电子束轰击荧光屏会产生二次电子,处于高电位的A3可吸收这些电子。

    (2)偏转系统
    示波管的偏转系统大都是静电偏转式,它由两对相互垂直的平行金属板组成,分别称为水平偏转板和垂直偏转板。分别控制电子束在水平方向和垂直方向的运动。当电子在偏转板之间运动时,如果偏转板上没有加电压,偏转板之间无电场,离开第二阳极后进入偏转系统的电子将沿轴向运动,射向屏幕的中心。如果偏转板上有电压,偏转板之间则有电场,进入偏转系统的电子会在偏转电场的作用射向荧光屏的指定位置。

    如图5-3所示。如果两块偏转板互相平行,并且它们的电位差等于零,那么通过偏转板空间的,具有速度υ的电子束就会沿着原方向(设为轴线方向)运动,并打在荧光屏的坐标原点上。如果两块偏转板之间存在着恒定的电位差,则偏转板间就形成一个电场,这个电场与电子的运动方向相垂直,于是电子就朝着电位比较高的偏转板偏转。这样,在两偏转板之间的空间,电子就沿着抛物线在这一点上做切线运动。最后,电子降落在荧光屏上的A点,这个A点距离荧光屏原点(0)有一段距离,这段距离称为偏转量,用y表示。偏转量y与偏转板上所加的电压Vy成正比。同理,在水平偏转板上加有直流电压时,也发生类似情况,只是光点在水平方向上偏转。

    (3)荧光屏
    荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。在示波器的荧光屏内壁涂有一层发光物质,因而,荧光屏上受到高速电子冲击的地点就显现出荧光。此时光点的亮度决定于电子束的数目、密度及其速度。改变控制极的电压时,电子束中电子的数目将随之改变,光点亮度也就改变。在使用示波器时,不宜让很亮的光点固定出现在示波管荧光屏一个位置上,否则该点荧光物质将因长期受电子冲击而烧坏,从而失去发光能力。

    涂有不同荧光物质的荧光屏,在受电子冲击时将显示出不同的颜色和不同的余辉时间,通常供观察一般信号波形用的是发绿光的,属中余辉示波管,供观察非周期性及低频信号用的是发橙黄色光的,属长余辉示波管;供照相用的示波器中,一般都采用发蓝色的短余辉示波管

    2.垂直(Y轴)放大电路
    由于示波管的偏转灵敏度甚低,例如常用的示波管13SJ38J型,其垂直偏转灵敏度为0.86mm/V(约12V电压产生1cm的偏转量),所以一般的被测信号电压都要先经过垂直放大电路的放大,再加到示波管的垂直偏转板上,以得到垂直方向的适当大小的图形。

    3.水平(X轴)放大电路
    由于示波管水平方向的偏转灵敏度也很低,所以接入示波管水平偏转板的电压(锯齿波电压或其它电压)也要先经过水平放大电路的放大以后,再加到示波管的水平偏转板上,以得到水平方向适当大小的图形。

    4.扫描与同步电路
    扫描电路产生一个锯齿波电压。该锯齿波电压的频率能在一定的范围内连续可调。锯齿波电压的作用是使示波管阴极发出的电子束在荧光屏上形成周期性的、与时间成正比的水平位移,即形成时间基线。这样,才能把加在垂直方向的被测信号按时间的变化波形展现在荧光屏上。

    5.电源供给电路
    电源供给电路供给垂直水平放大电路、扫描与同步电路以及示波管与控制电路所需的负高压灯丝电压等。

    示波器的原理功能方框图可见,被测信号电压加到示波器的Y轴输入端,经垂直放大电路加于示波管的垂直偏转板。示波管的水平偏转电压,虽然多数情况都采用锯齿电压(用于观察波形时),但有时也采用其它的外加电压(用于测量频率、相位差等时),因此在水平放大电路输入端有一个水平信号选择开关,以便按照需要选用示波器内部的锯齿波电压,或选用外加在X轴输入端上的其它电压来作为水平偏转电压。

    此外,为了使荧光屏上显示的图形保持稳定,要求锯齿波电压信号的频率和被测信号的频率保持同步。这样,不仅要求锯齿波电压的频率能连续调节,而且在产生锯齿波的电路上还要输入一个同步信号。这样,对于只能产生连续扫描(即产生周而复始、连续不断的锯齿波)一种状态的简易示波器(如国产SB10型等示波器)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,以牵制锯齿波的振荡频率。对于具有等待扫描功能(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波,进行一次扫描)功能的示波器(如国产ST-16型示波器、SR-8型双踪示波器等而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。为了适应各种需要,同步(或触发)信号可通过同步或触发信号选择开关来选择,通常来源有3个:①从垂直放大电路引来被测信号作为同步(或触发)信号,此信号称为“内同步”(或“内触发”)信号;②引入某种相关的外加信号为同步(或触发)信号,此信号称为“外同步”(或“外触发”)信号,该信号加在外同步(或外触发)输入端;③有些示波器的同步信号选择开关还有一档“电源同步”,是由220V,50Hz电源电压,通过变压器次级降压后作为同步信号。

    (二)波形显示的基本原理

    示波器示波器

    由示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。
     
    若被测信号电压的频率等于锯齿波电压频率整数倍数时,则荧光屏上将显示出周期为整数的被测信号稳定波形。而当被测信号电压的频率与锯齿波电压的频率不成整数倍数时,则荧光屏上不能获得稳定的波形,如图5-7所示。在图5-7中,第一次扫描时,屏上显示的是0~1这段波形曲线;第二次扫描时,屏上显示1~2这段波形曲线;第三次扫描时,屏上显示2~3这段波形曲线;……可见,每次荧光屏上显示的波形曲线都不同,所以图形不稳定。

    由上述可见,为使荧光屏上的图形稳定,被测信号电压的频率应与锯齿波电压的频率保持整数比的关系,即同步关系。为了实现这一点,就要求锯齿波电压的频率连续可调,以便适应观察各种不同频率的周期信号。其次,由于被测信号频率和锯齿波振荡信号频率的相对不稳定性,即使把锯齿波电压的频率临时调到与被测信号频率成整倍数关系,也不能使图形一直保持稳定。因此,示波器中都设有同步装置。也就是在锯齿波电路的某部分加上一个同步信号来促使扫描的同步,对于只能产生连续扫描(即产生周而复始连续不断的锯齿波)一种状态的简易示波器(如国产SB-10型示波器等)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,当所加同步信号的频率接近锯齿波频率的自主振荡频率(或接近其整数倍)时,就可以把锯齿波频率“拖入同步”或“锁住”。对于具有等待扫描(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波进行一次扫描)功能的示波器(如国产ST-16型示波器、SBT-5型同步示波器、SR-8型双踪示波器等等)而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。这样,只要按照需要来选择适当的同步信号或触发信号,便可使任何欲研究的过程与锯齿波扫描频率保持同步。[2]

    显示原理/示波器 编辑

    示波器示波器

    在电子实践技术过程中,常常需要同时观察两种(或两种以上)信号随时间变化的过程。并对这些不同信号进行电参量的测试和比较。为了达到这个目的,人们在应用普通示波器原理的基础上,采用了以下两种同时显示多个波形的方法:一种是双线(或多线)示波法;另一种是双踪(或多踪)示波法。应用这两种方法制造出来的示波器分别称为双线(或多线)示波器和双踪(或多踪)示波器。

    1.双线(或多线)示波

    双线(或多线)示波器是采用双枪(或多枪)示波管来实现的。下面以双枪示波管为例加以简单说明。双枪示波管有两个互相独立的电子枪产生两束电子。另有两组互相独立的偏转系统,它们各自控制一束电子作上下左右的运动。荧光屏是共用的,因而屏上可以同时显示出两种不同的电信号波形,双线示波也可以采用单枪双线示波管来实现。这种示波管只有一个电子枪,在工作时是依靠特殊的电极把电子分成两束。然后,由管内的两组互相独立的偏转系统,分别控制两束电子上下、左右运动。荧光屏是共用的,能同时显示出两种不同的电信号波形。由于双线示波管的制造工艺要求高,成本也高,所以应用并不十分普遍。

    2.双踪(或多踪)示波

    双踪(或多踪)示波是在单线示波器的基础上,增设一个专用电子开关,用它来实现两种(或多种)波形的分别显示。由于实现双踪(或多踪)示波比实现双线(或多线)示波来得简单,不需要使用结构复杂、价格昂贵的“双腔”或“多腔”示波管,所以双踪(或多踪)示波获得了普遍的应用。

    (1)双踪示波的显示原理
    电子开关K的作用是使加在示波管垂直偏转板上的两种信号电压作周期性转换。例如,在0~1这段时间里,电子开关K与信号通道A接通,这时在荧光屏上显示出信号UA的一段波形;在1~2这段时间里,电子开关K与信号通道B接通,这时在荧光屏上显现出信号UB的一段波形;在2~3这段时间里,荧光屏上再一次显示出信号UA的一段波形;在3~4这段时间里,荧光屏上将再一次显示出UB的一段波形……。这样,两个信号在荧光屏上虽然是交替显示的,但由于人眼的视觉暂留现象和荧光屏的余辉(高速电子在停止冲击荧光屏后,荧光屏上受冲击处仍保留一段发光时间)现象,就可在荧光屏上同时看到两个被测信号波形 。

    为了保持荧光屏显示出来的两种信号波形稳定,则要求被测信号频率、扫描信号频率与电子开关的转换频率三者之间必须满足一定的关系。

    首先,两个被测信号频率与扫描信号频率之间应该是成整数比的关系,也就是要求“同步”。这一点与单线示波器的原理是相同的,只是现在的被测信号是两个,而扫描电压是一个。在实际应用中,需要观察和比较的两个信号常常是互相有内在联系的,所以上述的同步要求一般是容易满足的。
     
    为了使荧光屏上显示的两个被测信号波形都稳定,除满足上述要求外,还必须合理地选择电子开关的转换频率,使得在示波器上所显示的波形个数合适,以便于观察。下面谈谈电子开关的工作方式问题,这个问题与电子开关的转换频率有关。

    电子开关的工作方式有“交替”转换和“断续”转换两种。
    电子开关“交替”转换工作方式的波形示意图。在0~1时间内,电子开关与通道A接通,加在X轴上的扫描信号开始进行第一个正程扫描,此时荧光屏上将显现出信号UA的波形;在完成UA波形显示后,扫描电压迅速回扫;在1~2时间内,电子开关K与通道B接通,X轴上的扫描信号开始进行第二个正程扫描,荧光屏上将显示出信号UB的波形;在2~3时间内,荧光屏上再一次显示出信号UA的波形;在3~4时间内,荧光屏上再一次显示出信号UB的波形……。由此可见,被测信号UA、UB的波形是依次、交替地出现在荧光屏上的,荧光屏上显示的波形。显然,此时电子开关的转换与X轴的扫描始终保持着一致的步调,即电子开关的转换频率等于X轴扫描信号的频率
      

    采用交替转换工作方式的显示的波形与双线示波法所显示的波形非常相似,它们都没有间断点。但由于被测信号UA、UB的波形是依次交替地出现在荧光屏上的,所以,如果交替的间隙时间超过了人眼的视觉暂留时间和荧光屏的余辉时间,则人们所看到的荧光屏上的波形就会有闪烁现象。为了避免这种情况的出现,就要求电子开关有足够高的转换频率。这就是说当被测信号的频率较低时,不宜采用交替转换工作方式,而应采用断续转换工作方式。

    当电子开关用断续转换工作方式时,在X轴扫描的每一个过程中,电子开关都以足够高的转换频率,分别对所显示的每个被测信号进行多次取样。这样,即使被测信号频率较低,也可避免出现波形的闪烁现象。同时,由于在一次扫描的过程中,光点在两个图形上交换的次数极多,所以图形上的细小断裂痕迹不显著,并不妨碍对波形细节的观察。图5-10是电于开关采用断续转换方式时的波形示意图。实际上,由于开关的转换频率选得远大于X轴扫描频率,所以荧光屏上显示的图形不会是图5-10所示的断续图形,而是连续的图形。图中垂直方向的细虚线表示了电子开关的转换过程。因在转换过程中示波器电路的设置使电子束截止,所以图中所示的垂直细虚线实际上也是不可见的。


    在了解上述用电子开关来实现双踪示波的原理后,就不难联想到用环形计数器来实现多踪示波的原理。由于两者的显示原理相似,这里就不再赘述。

    (2)双踪示波器的基本组成

    双踪示波器主要是由两个通道的Y轴前置放大电路、门控电路、电子开关、混合电路、延迟电路、Y轴后置放大电路、触发电路、扫描电路、X轴放大电路、Z轴放电路、校准信号电路、示波管和高低压电源供给电路等组成。
    观察信号波形时,被测信号uA,uB通过YA,YB两个输入端输入示波器,先分别送到Y轴前置放大电路YA和YB进行放大。因通道YA和通道YB都受电子开关的控制,所以uA,uB两信号轮换着输送到后面的混合电路,加到示波管的垂直偏转板上。

    为了适应各种不同的测试需要,电子开关可有五种不同的工作状态,即交替、YA、YB、YA+YB、断续等。这5种工作状态由显示方式开关来控制。

    当显示方式开关置于交替位置时,电子开关为一双稳态电路。它受由扫描电路来的闸门信号控制,使得Y轴两个前置通道随着扫描电路门信号的变化而交替地工作。每秒钟交替转换次数与由扫描电路产生的扫描信号的重复频率有关。交替工作状态适用于观察频率不太低的被测信号。

    当显示方式开关置于YA或YB位置时,电子开关为一单稳态电路。前置放大电路YA或YB可单独工作,此时,双踪示波器可作为普通单线示波器使用。

    当显示方式开关置于YA+YB位置时,电子开关处于不工作状态。此时,YA、YB两通道同时工作,因而可得到两信号相加或两信号相减的显示。然而,两信号究竟是相加还是相减,这要通过YA通道的极性作用开关来选择。这个开关有两个位置,在第一个位置时,荧光屏上的图形为两信号之和;在第二个位置(-YA)时,荧光屏上的图形为两信号之差。

    为了观察被测信号随时间变化的波形,示波管的水平偏转板上必须加以线性扫描电压(锯齿波电压)。这个扫描电压是由扫描电路产生的。当触发信号加到触发电路时,触发了扫描电路,扫描电路就产生相应的扫描信号;当不加触发信号时,扫描电路就不产生扫描信号。

    触发有内触发、外触发两种,由触发选择开关来选择。当该开关置于内的位置时,触发信号来自经Y轴通道送入的被测信号。当该开关置于外的位置时,触发信号是由外部送入的。这个信号应与被测信号的频率成整数比的关系。示波器在使用中,多数采用内触发工作方式。

    所谓内触发也分为两种情况,并由内触发选择开关控制。当开关置于常态的位置时,触发电路的触发信号来自YA,YB通道。此时,两个通道即可同时稳定地显示出各自的被测信号。当用双踪显示来作时间比较分析时,就应该将内触发选择开关置于YB的位置。在这个位置时,触发电路的触发信号只取自YB通道的输入信号。此时只有当uA,uB的频率成整数比时,荧光屏上才能同时稳定地显示两个波形。

    扫描电路产生的扫描信号(锯齿波信号),通过X轴选择开关接到X轴放大电路,经放大后送到示波管的X轴偏转板。这就是通常在观察信号随时间变化的波形时,开关选扫描档的情况。除上述情况外,用示波器进行其它测试(比如观察李沙育图形)时,开关置X外接档,此时可将X轴输入端输入的信号,加到X轴放大电路进行放大,随后再送至X轴偏转板。

    Z轴放大电路对荧光屏上光点辉度起着调节的作用,抹去不必要显示的光点轨迹。当扫描电路闸门信号来到Z轴放大电路,Z轴放大电路便输出正向的增辉脉冲信号,加至示波管的控制极。这就是说,在扫描信号的过程中,荧光屏上的光点得以增辉;在电子开关的转换过程中,电子开关电路将输出脉冲信号也加至Z轴放大电路,此时Z轴放大电路便输出负向脉冲信号,加至示波管的控制极。这样,在电子开关的转换过程中,就消去了两个通道交替工作时的过渡光点,以提高显示波形的清晰度。

    校正信号电路产生一个一定频率、一定幅度的矩形信号(如国产SR-8型两踪示波器的校正信号是频率为lkHz、幅度为1V)。它是作校正Y轴放大电路的灵敏度和X轴的扫描速度之用的。

    高、低压电源供给电路中的低压是供给示波器各级所需的低压电源的,高压是供给示波管显示系统电源的。

    使用方法/示波器 编辑

    示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。以SR-8型双踪示波器为例介绍。

    (一)面板装置

    SR-8型双踪示波器的面板图如图5-12所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。
    1.显示部分  主要控制件为:
    (1)电源开关。
    (2)电源指示灯。
    (3)辉度  调整光点亮度。
    (4)聚焦  调整光点或波形清晰度
    (5)辅助聚焦  配合“聚焦”旋钮调节清晰度。
    (6)标尺亮度  调节坐标片上刻度线亮度。
    (7)寻迹  当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。
    (8)标准信号输出  1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y轴输入灵敏度和X轴扫描速度。

    2.Y轴插件部分
    (1)显示方式选择开关  用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式:
    “交替”: 当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,

    每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电
    子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。
    “断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。
    “YA”、“YB ”:显示方式开关置于“YA ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“YA”或“YB ”通道的信号波形。
    “YA + YB”:显示方式开关置于“YA + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。
    (2)“DC-⊥-AC”  Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。
    (3)“微调V/div”  灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。
    (4)“平衡”  当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。
    (5)“↑↓ ”  Y轴位移电位器,用以调节波形的垂直位置。
    (6)“极性、拉YA ”  YA 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - YA 。
    (7)“内触发、拉YB ” 触发源选择开关。在按的位置上(常态) 扫描触发信号分别取自YA 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。
    (8)Y轴输入插座  采用BNC型插座,被测信号由此直接或经探头输入。

    3.X轴插件部分
    (1)“t/div”  扫描速度选择开关及微调旋钮。X轴的光点移动速度由其决定,从0.2μs~1s共分21档级。当该开关“微调”电位器顺时针方向旋转到底并接上开关后,即为“校准”位置,此时“t/div”的指示值,即为扫描速度的实际值。
    (2)“扩展、拉×10”  扫描速度扩展装置。是按拉式开关,在按的状态作正常使用,拉的位置扫描速度增加10倍。“t/div”的指示值,也应相应计取。采用“扩展 拉×10”适于观察波形细节。
    (3)“→←   ”  X轴位置调节旋钮。系X轴光迹的水平位置调节电位器,是套轴结构。外圈旋钮为粗调装置,顺时针方向旋转基线右移,反时针方向旋转则基线移。置于套轴上的小旋钮为细调装置,适用于经扩展后信号的调节。
    (4)“外触发、X外接”插座  采用BNC型插座。在使用外触发时,作为连接外触发信号的插座。也可以作为X轴放大器外接时信号输入插座。其输入阻抗约为1MΩ。外接使用时,输入信号的峰值应小于12V。
    (5)“触发电平”旋钮  触发电平调节电位器旋钮。用于选择输入信号波形的触发点。具体地说,就是调节开始扫描的时间,决定扫描在触发信号波形的哪一点上被触发。顺时针方向旋动时,触发点趋向信号波形的正向部分,逆时针方向旋动时,触发点趋向信号波形的负向部分。
    (6)“稳定性”  触发稳定性微调旋钮。用以改变扫描电路的工作状态,一般应处于待触发状态。调整方法是将Y轴输入耦合方式选择(AC-地-DC)开关置于地档,将V/div开关置于最高灵敏度的档级,在电平旋钮调离自激状态的情况下,用小螺丝刀将稳定度电位器顺时针方向旋到底,则扫描电路产生自激扫描,此时屏幕上出现扫描线;然后逆时针方向慢慢旋动,使扫描线刚消失。此时扫描电路即处于待触发状态。在这种状态下,用示波器进行测量时,只要调节电平旋钮,即能在屏幕上获得稳定的波形,并能随意调节选择屏幕上波形的起始点位置。少数示波器,当稳定度电位器逆时针方向旋到底时,屏幕上出现扫描线;然后顺时针方向慢慢旋动,使屏幕上扫描线刚消失,此时扫描电路即处于待触发状态。
    (7)“内、外”  触发源选择开关。置于“内”位置时,扫描触发信号取自Y轴通道的被测信号;置于“外”位置时,触发信号取自“外触发X 外接”输入端引入的外触发信号。
    (8)“AC”“AC(H)”“DC”  触发耦合方式开关。 “DC”档,是直流藕合状态,适合于变化缓慢或频率甚低(如低于100Hz)的触发信号。“AC”档,是交流藕合状态,由于隔断了触发中的直流分量,因此触发性能不受直流分量影响。“AC(H)”档,是低频抑制的交流耦合状态,在观察包含低频分量的高频复合波时,触发信号通过高通滤波器进行耦合,抑制了低频噪声和低频触发信号(2MHz以下的低频分量),免除因误触发而造成的波形幌动。
    (9)“高频、常态、自动”  触发方式开关。用以选择不同的触发方式,以适应不同的被测信号与测试目的。“高频”档,频率甚高时(如高于5MHz),且无足够的幅度使触发稳定时,选该档。此时扫描处于频触发状态,由示波器自身产生的高频信号(200kHz信号),对被测信号进行同步。不必经常调整电平旋钮,屏幕上即能显示稳定的波形,操作方便,有利于观察高频信号波形。“常态”档,采用来自Y轴或外接触发源的输入信号进行触发扫描,是常用的触发扫描方式。“自动”挡,扫描处于自动状态(与高频触发方式相仿),但不必调整电平旋钮,也能观察到稳定的波形,操作方便,有利于观察较低频率的信号。
    (10)“+、-”  触发极性开关。在“+”位置时选用触发信号的上升部分,在“-”位置时选用触发信号的下降部分对扫描电路进行触发。

    (二)使用前的检查、调整和校准
    示波器初次使用前或久藏复用时,有必要进行一次能否工作的简单检查和进行扫描电路稳定度、垂直放大电路直流平衡的调整。示波器在进行电压和时间的定量测试时,还必须进行垂直放大电路增益和水平扫描速度的校准。示波器能否正常工作的检查方法、垂直放大电路增益和水平扫描速度的校准方法,由于各种型号示波器的校准信号的幅度、频率等参数不一样,因而检查、校准方法略有差异。

    (三)使用步骤
    用示波器能观察各种不同电信号幅度随时间变化的波形曲线,在这个基础上示波器可以应用于测量电压、时间、频率、相位差和调幅度等电参数。下面介绍用示波器观察电信号波形的使用步骤。
    1.选择Y轴耦合方式
    根据被测信号频率的高低,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC。
    2.选择Y轴灵敏度
    根据被测信号的大约峰-峰值(如果采用衰减探头,应除以衰减倍数;在耦合方式取DC档时,还要考虑叠加的直流电压值),将Y轴灵敏度选择V/div开关(或Y轴衰减开关)置于适当档级。实际使用中如不需读测电压值,则可适当调节Y轴灵敏度微调(或Y轴增益)旋钮,使屏幕上显现所需要高度的波形。
    示波器示波器

    3.选择触发(或同步)信号来源与极性
    通常将触发(或同步)信号极性开关置于“+”或“-”档。
    4.选择扫描速度
    根据被测信号周期(或频率)的大约值,将X轴扫描速度t/div(或扫描范围)开关置于适当档级。实际使用中如不需读测时间值,则可适当调节扫速t/div微调(或扫描微调)旋钮,使屏幕上显示测试所需周期数的波形。如果需要观察的是信号的边沿部分,则扫速t/div开关应置于最快扫速档。
    5.输入被测信号
    被测信号由探头衰减后(或由同轴电缆不衰减直接输入,但此时的输入阻抗降低、输入电容增大),通过Y轴输入端输入示波器。[3]

    常见现象及原因/示波器 编辑

    一、没有光点或波形
    电源未接通。
    辉度旋钮未调节好。
    X,Y轴移位旋钮位置调偏。
    Y轴平衡电位器调整不当,造成直流放大电路严重失衡。

    二、水平方向展不开

    示波器示波器


    触发源选择开关置于外档,且无外触发信号输入,则无锯齿波产生。
    电平旋钮调节不当。
    稳定度电位器没有调整在使扫描电路处于待触发的临界状态。
    X轴选择误置于X外接位置,且外接插座上又无信号输入。
    两踪示波器如果只使用A通道(B通道无输入信号),而内触发开关置于拉YB位置,则无锯齿波产生。

    三、垂直方向无展示
    输入耦合方式DC-接地-AC开关误置于接地位置。
    输入端的高、低电位端与被测电路的高、低电位端接反。
    输入信号较小,而V/div误置于低灵敏度档。

    四、波形不稳定。
    稳定度电位器顺时针旋转过度,致使扫描电路处于自激扫描状态(未处于待触发的临界状态)。
    触发耦合方式AC、AC(H)、DC开关未能按照不同触发信号频率正确选择相应档级。
    选择高频触发状态时,触发源选择开关误置于外档(应置于内档。)
    部分示波器扫描处于自动档(连续扫描)时,波形不稳定。

    五、垂直线条密集或呈现一矩形

    t/div开关选择不当,致使f扫描<<f信号。

    六、水平线条密集或呈一条倾斜水平线
    t/div关选择不当,致使f扫描>>f信号

    七、垂直方向的电压读数不准
    未进行垂直方向的偏转灵敏度(v/div)校准。
    进行v/div校准时,v/div微调旋钮未置于校正位置(即顺时针方向未旋足)。
    进行测试时,v/div微调旋钮调离了校正位置(即调离了顺时针方向旋足的位置)。
    使用l0 :1衰减探头,计算电压时未乘以10倍。
    被测信号频率超过示波器的最高使用频率,示波器读数比实际值偏小。
    测得的是峰-峰值,正弦有效值需换算求得。

    八、水平方向的读数不准
    未进行水平方向的偏转灵敏度(t/div)校准。
    进行t/div校准时,t/div微调旋钮未置于校准位置(即顺时针方向未旋足)。
    进行测试时,t/div微调旋钮调离了校正位置(即调离了顺时针方向旋足的位置)。
    扫速扩展开关置于拉(×10)位置时,测试未按t/div开关指示值提高灵敏度10倍计算。

    九、交直流叠加信号的直流电压值分辨不清
    Y轴输入耦合选择DC-接地-AC开关误置于AC档(应置于DC档)。
    测试前未将DC-接地-AC开关置于接地档进行直流电平参考点校正。
    Y轴平衡电位器未调整好。

    十、测不出两个信号间的相位差(波形显示法)
    双踪示波器误把内触发(拉YB)开关置于按(常态)位置应把该开关置于拉YB位置。
    双踪示波器没有正确选择显示方式开关的交替和断续档。
    单线示波器触发选择开关误置于内档。
    单线示波器触发选择开关虽置于外档,但两次外触发未采用同一信号。

    十一、调幅波形失常
    t/div开关选择不当,扫描频率误按调幅波载波频率选择(应按音频调幅信号频率选择)。

    十二、波形调不到要求的起始时间和部位
    稳定度电位器未调整在待触发的临界触发点上。
    触发极性(+、-)与触发电平(+、-)配合不当。
    触发方式开关误置于自动档(应置于常态档)。

    6.触发(或同步)扫描
    缓缓调节触发电平(或同步)旋钮,屏幕上显现稳定的波形,根据观察需要,适当调节电平旋钮,以显示相应起始位置的波形。
    如果用双踪示波器观察波形,作单踪显示时,显示方式开关置于YA或YB。被测信号通过YA或YB输入端输入示波器。Y轴的触发源选择“内触发一拉YB”开关置于按(常态)位置。若示波器作两踪显示时,显示方式开关置于交替档(适用于观察频率不太低的信号),或断续档(适用于观察频率不太高的信号),此时Y轴的触发源选择“内触发-拉YB”开关置“拉YB”档。   

    使用不当造成的异常现象
    示波器在使用过程中,往往由于操作者对于示波原理不甚理解和对示波器面板控制装置的作用不熟悉,会出现由于调节不当而造成异常现象。

    使用习惯/示波器 编辑

    当一件正确的事情成为我们习惯的时候,对一个人的影响是正面且长期的,意义也很重大。 养成使用示波器的习惯对一个工程师的影响也是一生的,而当习惯进一步上升为理念时,就算刻意去摆脱都不是那么容易。 
    当产品出现问题时,很多人下意识还是会拿万用表去东量量,西测测。究其原因,万用表人手一个,使用便捷,所以受到广大工程师的欢迎。在这里我想说的是这个习惯不大好,详细原因且听我慢慢道来。 
    万用表的使用场景主要是用于阻值(电阻值,对地阻抗),通断(是否滴滴响)等简单测量,这两个功能是示波器无能为力的。电压值也可以用万用表量。用万用表测量电压有效值更准确,但要观察电压具体“长什么样”还是得用示波器。 
    有一个经典的比喻,示波器是电子工程师的眼睛。如果不使用示波器,我们在研的产品就相当于一个黑盒子,难以探知其真实面目,毕竟一抹黑的路不好走。下面结合一些经历来谈谈为什么要养成使用示波器的习惯。 
    1. 理论联系实际的好帮手 
    示波器是一名硬件测试工程师必须熟练掌握的工具,但由于工作性质的原因,我们经常做的工作是对照测试用例或者规范进行一些固定项的重复测试,如各类接口,内部总线等。久而久之,很多人就不满足于这种知识面了。不安于现状的测试工程师们接下来的步骤就是找来一些资料来深入学习自己所面向的产品,了解工作原理,内部构造,各模块电路,信号流向等。这些知识有的清晰,有的模棱两可,有的甚至搞不懂。 
    当你遇到这种情况时,示波器可以成为你非常好的帮手,对不懂的地方,可以先查查资料,尝试弄明白原理,然后用示波器量一下波形,时序等,验证自己的分析结果。通过示波器可以直观地看到波形,会使人感到很清晰,印象深刻,理论知识也可以得到更好的理解。 
    把一个电子产品上的信号都量测之后,加上学习一些文档,那样对自己所面对的产品理解就会透彻了。 
    2. 直面bug的本质 
    当我们在解决bug的时候,有的问题可能根据经验就解决了,而没有去彻底把本质搞明白。这样就会有隐患,而且下次设计电路的时候可能掉进同样的一个陷阱。 
    比如I2C上拉电阻配置不正确导致通信出现概率性失败,信号线上电容过大导致波形失真等,也许我们改改电阻值、电容值就把问题解决了,但是这样还不够,如果通过示波器看到波形的本质,然后再去调试。这样解决的问题,以后就不会再犯了,也会保证避免出现一些当时认为已经解决,但是在批量时依然会概率性的出问题。 
    一些EMC问题是由内部高频信号的谐波引起,通过示波器调试,可以在保证信号完整性的基础上有效降低辐射信号的能量,如串接更合适的匹配电阻,增加对地电容等手段去解决。而保证信号完整性,最直接的手段就是使用示波器测试,以免矫枉过正,出现隐患。 
    3. 有图有真相 
    有些bug出现的时候,需要多方来一起解决。这样的多方邮件沟通就需要图像作为重要依据了。之前遇到一个bug:Host端向devICe端加载文件时出现概率性失败的情况。这里涉及三方的硬件,软件,还要涉及Host芯片及Device芯片厂家的台湾原厂。各方经过各自的检查,加上各自之前出货的经验,均认为自己没有问题。使用示波器反复量测波形,时序,在开始也没能定位问题。(http://www.diangon.com/ 版权所有)因在启动时,时钟信号线上会出现一部分1V杂波信号,然后通过实验手段判定就是Host端发出,以此作为证据要求Host端的台湾原厂修改,理由是不管此信号是否对通信造成影响,至少先解决这个问题再考虑。在更新过两次代码后,1V杂波信号消失,老化拷机,并未出现问题。 
    出于自我保护本能以及各方知识的局限,一般各自都会认为自己这方没有问题,通过示波器量测波形,找到证据,督促修改,会使得问题容易得到解决。 
    最后,需要特别注意的是示波器的操作一定要正确,错误的操作及细节的不注意,就有可能把示波器这一神器变成双刃剑,带来不必要的麻烦,需要特别注意。在实际工作中经常会发现不同的人测试会得到不同的测试结果,这里就需要平时多多累积一些经验了。归根结底,还是一个要多使用的问题,当然文档也要多看。 
    希望广大工程师们能多使用示波器,同时也需要各厂家的慷慨解囊,提供更多的示波器,为员工创造条件,从而不会让员工因资源有限而养成使用万用表的习惯。[4]

    注意事项/示波器 编辑

    为了仪器操作人员的安全和仪器安全,仪器在安全范围内正常工作,保证测量波形准确、数据可靠,应注意:
       
    1.通用示波器通过调节亮度和聚焦旋钮使光点直径最小以使波形清晰,减小测试误差;不要使光点停留在一点不动,否则电子束轰击一点宜在荧光屏上形成暗斑,损坏荧光屏。  
    2.测量系统- 例如示波器、信号源;打印机、计算机等设备等。被测电子设备- 例如仪器、电子部件、电路板、被测设备供电电源等设备接地线必须与公共地(大地)相连。  
    3. TDS200/TDS1000/TDS2000 系列数字示波器配合探头使用时,只能测量(被测信号- 信号地就是大地,信号端输出幅度小于300V CAT II)信号的波形。绝对不能测量市电AC220V 或与市电AC220V 不能隔离的电子设备的浮地信号。

    4.通用示波器的外壳,信号输入端BNC 插座金属外圈,探头接地线,AC220V 电源插座接地线端都是相通的。如仪器使用时不接大地线,直接用探头对浮地信号测量,则仪器相对大地会产生电位差;电压值等于探头接地线接触被测设备点与大地之间的电位差。这将对仪器操作人员、示波器、被测电子设备带来严重安全危险。
     
    5.用户如须要测量开关电源(开关电源初级,控制电路) 、UPS(不间断电源)、电子整流器、节能灯、变频器等类型产品或其它与市电AC220V 不能隔离的电子设备进行浮地信号测试时,必使用DP100高压隔离差分探头

    测试应用/示波器 编辑

    电压的测量

    利用示波器所做的任何测量,都是归结为对电压的测量。示波器可以测量各种波形的电压幅度,既可以测量直流电压和正弦电压,又可以测量脉冲或非正弦电压的幅度。更有用的是它可以测量一个脉冲电压波形各部分的电压幅值,如上冲量或顶部下降量等。这是其他任何电压测量仪器都不能比拟的。

    1.直接测量法所谓直接测量法,就是直接从屏幕上量出被测电压波形的高度,然后换算成电压值。定量测试电压时,一般把Y轴灵敏度开关的微调旋钮转至“校准”位置上,这样,就可以从“V/div”的指示值和被测信号占取的纵轴坐标值直接计算被测电压值。所以,直接测量法又称为标尺法。
    (1)交流电压的测量
    将Y轴输入耦合开关置于“AC”位置,显示出输入波形的交流成分。如交流信号的频率很低时,则应将Y轴输入耦合开关置于“DC”位置。
    将被测波形移至示波管屏幕的中心位置,用“V/div”开关将被测波形控制在屏幕有效工作面积的范围内,按坐标刻度片的分度读取整个波形所占Y轴方向的度数H,则被测电压的峰-峰值VP-P可等于“V/div”开关指示值与H的乘积。如果使用探头测量时,应把探头的衰减量计算在内,即把上述计算数值乘10。
    例如示波器的Y轴灵敏度开关“V/div”位于0.2档级,被测波形占Y轴的坐标幅度H为5div,则此信号电压的峰-峰值为1V。如是经探头测量,仍指示上述数值,则被测信号电压的峰-峰值就为10V。
    (2)直流电压的测量
    将Y轴输入耦合开关置于“地”位置,触发方式开关置“自动”位置,使屏幕显示一水平扫描线,此扫描线便为零电平线。
    将Y轴输入耦合开关置“DC”位置,加入被测电压,此时,扫描线在Y轴方向产生跳变位移H,被测电压即为“V/div”开关指示值与H的乘积。
    直接测量法简单易行,但误差较大。产生误差的因素有读数误差、视差和示波器的系统误差(衰减器、偏转系统、示波管边缘效应)等。
    2.比较测量法
    比较测量法就是用一已知的标准电压波形与被测电压波形进行比较求得被测电压值。
    将被测电压Vx输入示波器的Y轴通道,调节Y轴灵敏度选择开关“V/div”及其微调旋钮,使荧光屏显示出便于测量的高度Hx并做好记录,且“V/div”开关及微调旋钮位置保持不变。去掉被测电压,把一个已知的可调标准电压Vs输入Y轴,调节标准电压的输出幅度,使它显示与被测电压相同的幅度。此时,标准电压的输出幅度等于被测电压的幅度。比较法测量电压可避免垂直系统引起和误差,因而提高了测量精度。

    时间的测量


    示波器时基能产生与时间呈线性关系的扫描线,因而可以用荧光屏的水平刻度来测量波形的时间参数,如周期性信号的重复周期、脉冲信号的宽度、时间间隔、上升时间(前沿)和下降时间(后沿)、两个信号的时间差等等。
    将示波器的扫速开关“t/div”的“微调”装置转至校准位置时,显示的波形在水平方向刻度所代表的时间可按“t/div”开关的指示值直读计算,从而较准确地求出被测信号的时间参数。

    相位的测量


    利用示波器测量两个正弦电压之间的相位差具有实用意义,用计数器可以测量频率和时间,但不能直接测量正弦电压之间的相位关系。利用示波器测量相位的方法很多,下面,仅介绍几种常用的简单方法。
    1.双踪法
    双踪法是用双踪示波器在荧光屏上直接比较两个被测电压的波形来测量其相位关系。测量时,将相位超前的信号接入YB通道,另一个信号接入YA通道。选用YB触发。调节“t/div”开关,使被测波形的一个周期在水平标尺上准确地占满8div,这样,一个周期的相角360°被8等分,每1div相当于45°。读出超前波与滞后波在水平轴的差距T,按下式计算相位差φ:
    φ=45°/div×T(div)
    如T==1.5div ,则φ=45°/div×1.5div=67.5°
    2.李萨如图形法测相位
    将示波器的X轴选择置于X轴输入位置,将信号u1接入示波器的Y轴输入端,信号u2接入示波器的X轴输入端。适当调节示波器面板上相关旋钮,使荧光屏上显现一个大小适宜的椭圆(在特殊情况下,可能是一个正圆或一根斜线)。

    频率的测量


    用示波器测量信号频率的方法很多,下面介绍常用的两种基本方法。
    1.周期
    对于任何周期信号,可用前述的时间间隔的测量方法,先测定其每个周期的时间T,再用下式求出频率f :f=1/T
    例如示波器上显示的被测波形,一周期为8div,“t/div”开关置“1μs”位置,其“微调”置“校准”位置。则其周期和频率计算如下:
    T=1us/div×8div = 8us
    f= 1/8us =125kHz
    所以,被测波形的频率为125kHz。
    2.李萨育图形法测频率
    将示波器置X-Y工作方式,被测信号输入Y轴,标准频率信号输入“X外接”,慢慢改变标准频率,使这两个信号频率成整数倍时,例如fx :
    fy=1:2,则在荧光屏上会形成稳定的李沙育图形。
    李萨如图的形状不但与两个偏转电压的相位有关,而且与两个偏转电压的频率也有关。用描迹法可以画出ux与uy的各种频率比、不同相位差时的李沙育图形
    利用李萨如图形与频率的关系,可进行准确的频率比较来测定被测信号的频率。其方法是分别通过李萨如图形引水平线和垂直线,所引的水平线垂直线不要通过图形的交叉点或与其相切。若水平线与图形的交点数为m,垂直线与图形的交点数n,则
    fy / fx=m / n
    当标准频率fx(或fy)为已知时,由上式可以求出被测信号频率fy(或fx)。显然,在实际测试工作中,用李沙育图形进行频率测试时,为了使测试简便正确,在条件许可的情况下,通常尽可能调节已知频率信号的频率,使荧光屏上显示的图形为圆或椭圆。这时被测信号频率等于已知信号频率。
    由于加到示波器上的两个电压相位不同,荧光屏上图形会有不同的形状,但这对确定未知频率并无影响。
    萨如图法测量频率是相当准确的,但操作较费时。同时,它只适用于测量频率较低的信号。

    其他相关/示波器 编辑

     注意事项

    仪器操作人员的安全和仪器安全,仪器在安全范围内正常工作,保证测量波形准确、数据可靠,应注意:

    

数字示波器
数字示波器 数字示波器

    1.通用示波器通过调节亮度和聚焦旋钮使光点直径最小以使波形清晰,减小测试误差;不要使光点停留在一点不动,否则电子束轰击一点宜在荧光屏上形成暗斑,损坏荧光屏。

    2.测量系统- 例如示波器、信号源;打印机、计算机等设备等。被测电子设备- 例如仪器、电子部件、电路板、被测设备供电电源等设备接地线必须与公共地(大地)相连。

    3. TDS200/TDS1000/TDS2000 系列数字示波器配合探头使用时,只能测量(被测信号- 信号地就是大地,信号端输出幅度小于300V CAT II)信号的波形。绝对不能测量市电AC220V 或与市电AC220V 不能隔离的电子设备的浮地信号。(浮地是不能接大地的,否则造成仪器损坏,如测试电磁炉。)

    4.通用示波器的外壳,信号输入端BNC 插座金属外圈,探头接地线,AC220V 电源插座接地线端都是相通的。如仪器使用时不接大地线,直接用探头对浮地信号测量,则仪器相对大地会产生电位差;电压值等于探头接地线接触被测设备点与大地之间的电位差。这将对仪器操作人员、示波器、被测电子设备带来严重安全危险。

    5. 用户如须要测量开关电源(开关电源初级,控制电路) 、UPS(不间断电源)、电子整流器、节能灯、变频器等类型产品或其它与市电AC220V 不能隔离的电子设备进行浮地信号测试时,必使用DP100高压隔离差分探头。

    示波器使用中的其他注意事项
    (1)热电子仪器一般要避免频繁开机、关机,示波器也是这样。

    (2)如果发现波形受外界干扰,可将示波器外壳接地.

    (3)“Y输入”的电压不可太高,以免损坏仪器,在最大衰减时也不能超过400 V.“Y输入”导线悬空时,受外界电磁干扰出现干扰波形,应避免出现这种现象。

    (4)关机前先将辉度调节旋钮沿逆时针方向转到底,使亮度减到最小,然后再断开电源开关.(5)在观察荧屏上的亮斑并进行调节时,亮斑的亮度要适中,不能过亮。

    示波器分为万用示波表,数字示波器,模拟示波器,虚拟示波器,任意波形示波器,手持示波表,数字荧光示波器,数据采集示波器。

     

    知名厂商/示波器 编辑

     Tektronix
    泰克科技有限公司是一家全球领先的测试、测量和监测解决方案提供商。主要提供包括示波器、逻辑分析仪、信号源和频谱分析仪在内的以及各种视频测试、测量和监测产品。特别在示波器市场,泰克科技有限公司是全球销量最大的公司,也是全球80%测试工程师的首选品牌。泰克科技有限公司为固定网络和移动网络提供网络诊断设备、网络管理解决方案和相关支持服务,在其它参与竞争的产品市场中泰克也处于数一数二的地位。

    Agilent
    安捷伦科技公司是由美国惠普公司战略重组分立而成的一家高科技跨国公司,是全球领先的测量公司。安捷伦科技凭借其中心实验室的强大科研力量,专注于通信系统、自动化系统、测试和测量、半导体产品及生命科学和化学分析等前沿高科技领域的业务。其超凡的测量技术被广泛应用于感应、分析、显示及数据通信产品的研究开发。

    INSTEK
    固纬电子实业股份有限公司,创立於1975年,主要生产电子测试仪器,是台湾创立最早且最具规模之专业电子测试仪器大厂。固纬创业团队开创以电源供应器起家,以量测技术为核心,专注精密电子量测仪器研发,并开创国人自制电子测试仪器的先河,开发出国内第一台液晶数位式示波器,也是台湾唯一有能力产制数位示波器及频谱分析仪的厂商!

    LeCroy
    力科是提供测试设备解决方案的领导厂商,为使得全球各行各业中的公司提供能够设计和测试各类电子器件。我们成立于1964年,自公司成立以来,我们一直把重点放在研制改善生产效率的测试设备上,帮助工程师更快速、更高效地解决电路问题。

    FLUKE
    美国福禄克公司(Fluke Corporation)是美国丹纳赫集团(Danaher Corporation)旗下的公司。丹纳赫集团是一个拥有 40亿美元年销售额的美国上市公司,位列美国财富杂志全球 500强之一。自 1948年成立以来,福禄克公司为各种工业的生产和维修领域提供了至关重要的测试和维护工具。从工业电子产品的安装维护服务到计算机网络的故障解决维护管理,还有精密计量和质量控制,福禄克电子测试工具在全球范围内帮助用户的业务正常运作。

    深圳鼎阳
    SIGLENT是全球最大的数字示波器ODM制造商,是目前国内出货量最大的示波器生产厂家,公司为国家级高新技术企业和深圳市高新技术企业,通过了ISO9001:2008国际质量管理体系认证、ISO14001:2004环境管理体系认证,是中国电子仪器行业协会会员,广东省仪器代表协会理事单位。

    北京普源
    RIGOL是业界领先从事测量仪器研发、生产和销售的高新技术企业;是中国电子仪器行业协会、中国仪器仪表学会会员。

    公司拥有国际水准的技术,拥有数量众多的专利和计算机操作系统软件著作权,自主知识产权填补了国家空白。

    OWON
    OWON致力为消费者提供合宜适用的测量解决方案,将高端测量技术普及应用至您的工作与生活中,“MEET YOUR BEST NEEDS”正是为此孕育而生。

    自成功研发出国内首台手持彩色液晶数字存储式示波器后,我们在精密仪器仪表领域内快速成长,时至今日,OWON已可提供数字示波器系列数十个系列的产品。无论是技术人员、工程师还是科研、教学人员,他们都可通过OWON产品扩展个人能力并出色完成工作。

    青岛汉泰
    Hantek汉泰是一家集研发、生产、销售、服务为一体的通用仪器专业生产厂家,公司总部位于青岛高科技产业基地惠特工业城内,交通便利,良好的人文环境,浓厚的科研氛围,塑造出一个积极拼搏的团队,造就出一个卓越的民族仪器品牌!

    公司技术力量雄厚,研发团队由具有仪器仪表领先技术的权威专家组成,凭借多年仪器的研发及生产的技术和经验,结合国内外先进的管理理念,自2001年开始依次推出的USB 示波器,USB 任意信号发生器,USB 逻辑分析仪,手持示波表,万用表,手持多功能测量仪,便携示波器,程控电源等多个系列的通用仪器产品,均获得了市场的一致认可和好评,尤其在国外市场;Hantek持有多项软件著作权,发明实用新型和外观设计专利,产品均已通过了CE、FCC等认证。

    公司将继续秉承科技创新的优良传统,持续不断地推出满足市场需求的新产品,努力开创我们充满希望而又任重道远的未来,并以感恩的心态回馈社会.

     

    示波器内容的拓展/示波器 编辑

    基于Labwindows/CVI和SBS实时光网的虚拟示波器设计 

    相关文献

    添加视频 | 添加图册相关影像

    参考资料
    [1]^引用日期:2014-10-15
    [2]^引用日期:2010-06-17
    [3]^引用日期:2010-06-17
    [4]^引用日期:2014-05-08

    互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于www.baike.com。

    登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。

    互动百科用户登录注册
    此词条还可添加  信息模块

    WIKI热度

    1. 编辑次数:54次 历史版本
    2. 参与编辑人数:30
    3. 最近更新时间:2017-10-12 10:58:14

    贡献光荣榜

    更多