空间天文观测,是在距地面几十公里的高空到地球大气层外的太空进行的天文观测。空间天文观测按观测手段分为气球观测、火箭观测、卫星观测和其他航天器观测,而按观测对象或波段则分为空间太阳观测、紫外天文、X射线天文、γ射线天文和红外天文观测等。 正文
空间天文观测与地面天文观测相比的优越性在于:突破了地球大气层对天体辐射的阻挡和对观测分辨率和灵敏度的限制,可实现全波段、高灵敏度和高分辨率的观测,还可以利用航天器对太阳系内的天体就近观测。在航天器出现以前,人们用火箭和气球进行空间天文观测。1946年美国用 V-2火箭获得第一张紫外光谱照片,1948年首次用火箭测到太阳 X射线,1956年利用气球发射的固体火箭观测到太阳耀斑爆发的X射线。美国于1960年和1962年先后发射“太阳辐射监测卫星”(Solrad)系列和“轨道太阳观测台”(OSO)系列,对太阳短波辐射进行有计划的长期观测。60年代以来,随着观测仪器灵敏度和分辨率的提高以及卫星姿态控制技术和数据传输能力的发展,对天体的观测已从太阳观测扩大到对银河系辐射源和河外辐射源的紫外、X射线、γ射线观测。空间天文观测不但有力地推动了太阳物理、行星物理、恒星和星系物理的发展,而且促进了新的天文学分支──空间天文学的形成。 空间太阳观测 主要利用近地轨道卫星和航天站观测。空间探测器的深空测量也提供了太阳风、耀斑粒子发射和太阳磁场等方面的新知识。“太阳辐射监测卫星”2号主要用于监测来自整个太阳圆面的紫外和X射线的通量变化。“轨道太阳观测台”8号观测太阳的紫外、X射线和γ射线,研究太阳结构动力学、化学成分、太阳活动的长期变化和快速变化。1973年美国“天空实验室”的航天员在空间操纵“阿波罗”望远镜,对太阳色球和日冕进行了高分辨率的电视和照相观测,获得各种太阳活动条件下的太阳照片。 随着观测分辨率的提高,空间太阳观测已着重观测太阳精细结构和局部区域的快速变化,特别是耀斑爆发现象。1980年美国发射的“太阳峰年观测卫星”(SMM)首次发现太阳的紫外、红外和可见光总辐射流随时间有缓慢升降。1981年日本“雏鸟”号卫星记录到约 500个耀斑爆发,还发现个别耀斑辐射流的超精细时变结构。