• 正在加载中...
  • 聚吡咯

    聚吡咯(polypyrrole)是一种常见的导电聚合物。纯吡咯单体常温下呈现无色油状液体,是一种C,N五元杂环分子,沸点是129.8℃,密度是0.97g/cm3,微溶于水,无毒。

    编辑摘要

    基本信息 编辑信息模块

    中文名称: 聚吡咯 外文名: polypyrrole
    外观: 常温下呈现无色油状液体 密度: 0.97g/cm3
    沸点: 129.8℃
    简称: PPy

    目录

    简介/聚吡咯 编辑

    纯吡咯单体常温下呈现无色油状液体,是一种C,N五元杂环分子,沸点是129.8℃,密度是0.97g/cm,微溶于水,无毒。

    性质:研究和使用较多的一种杂环共轭型导电高分子,通常为无定型黑色固体,以吡咯为单体,经过电化学氧化聚合制成导电性薄膜,氧化剂通常为三氯化铁、过硫酸铵等。或者用化学聚合方法合成,电化学阳极氧化吡咯也是制备聚吡咯的有效手段。是一种空气稳定性好,易于电化学聚合成膜的导电聚合物,不溶不熔。它在酸性水溶液和多种有机电解液中都能电化学氧化聚合成膜,其电导率和力学强度等性质与电解液阴离子、溶剂、pH值和温度等聚合条件密切相关。导电聚吡咯具有共轭链氧化、对应阴离子掺杂结构,其电导率可达102~103S/cm,拉伸强度可达50~100MPa及很好的电化学氧化-还原可逆性。导电机理为:PPy结构有碳碳单键和碳碳双键交替排列成的共轭结构,双键是由σ电子和π电子构成的,σ电子被固定住无法自由移动,在碳原子间形成共价键。共轭双键中的2个π电子并没有固定在某个碳原子上,它们可以从一个碳原子转位到另一个碳原子上,即具有在整个分子链上延伸的倾向。即分子内的π电子云的重叠产生了整个分子共有的能带,π电子类似于金属导体中的自由电子。当有电场存在时,组成π键的电子可以沿着分子链移动。所以,PPy是可以导电的。在聚合物中,吡咯结构单元之间主要以α位相互联接,当在α位有取代基聚合反应不能进行。用电化学氧化聚合方法可以在电极表面直接生成导电性薄膜,其电导率可以达到102S/cm,且稳定性好于聚乙炔。聚吡咯的氧化电位比其单体低约1V左右。聚吡咯也可以用化学掺杂法进行掺杂,掺杂后由于反离子的引入,具有一定离子导电能力。聚吡咯除了作导电材料使用,如作为特种电极等场合外,还用于电显示材料等方面,作为线性共轭聚合物,聚吡咯还具有一定光导电性质。小阴离子掺杂的聚吡咯在空气中会缓慢老化,导致其电导率降低。大的疏水阴离子掺杂的聚吡咯能在空气中保存数年而无显著的变化。

    分子简式/聚吡咯 编辑

    聚吡咯 聚吡咯

    折线式

    应用范围/聚吡咯 编辑

    聚吡咯可用于生物、离子检测、超电容及防静电材料及光电化学电池的修饰电极、蓄电池的电极材料。此外,还可以作为电磁屏蔽材料和气体分离膜材料,用于电解电容、电催化、导电聚合物复合材料等,应用范围很广。具体如下:

    (1)离子交换树脂:相比于传统的离子交换树脂,这种材料把电化学和离子交换结合在一起,能方便的再生和减小能耗、降低污染。

    (2)生物材料:PPy具有良好的生物相容性,在电刺激下导电聚合物可以调节细胞的贴附、迁移、蛋白质的分泌与DNA的合成等过程,使其在生物医学领域有着广泛的应用前景。

    (3)质子交换膜:质子交换膜作为质子交换膜燃料电池的核心部件,直接决定着燃料电池的性能。将PPy引入其中制备复合型质子交换膜有助于提高复合膜的热稳定性、阻醇性和溶胀性等。

    (4)电催化:PPy膜具有独特的掺杂和脱掺杂性能,可以有针对性的掺杂进许多具有对反应物有催化作用的分子或离子,提供电催化效率和实际应用价值。

    (5)二次电池的电极材料:PPy具有较高的电导率、环境稳定性好、可逆的电化学氧化还原特性以及较强的电荷贮存能力,是一种理想的聚合物二次电池的电极材料

    (6)金属防腐:PPy膜对金属的保护起到钝化和屏蔽作用,提高了金属基体的腐蚀电位,降低了腐蚀速率。

    制备及其原理/聚吡咯 编辑

    聚吡咯可由吡咯单体通过化学氧化法或者电化学方法制得。化学聚合是在一定的反应介质中通过采用氧化剂对单体进行氧化或通过金属有机物偶联的方式得到共轭长链分子并同时完成一个掺杂过程。该方法的合成工艺简单,成本较低,适于大量生产。使用化学法制备聚吡咯时的产物一般为固体聚吡咯粉末,即难溶于一般的有机溶剂,机械性能也较差不易进行加工。合成聚吡咯产品是的机理:首先,当体系中有氧化剂存在时,呈电中性的一个聚吡咯单体分子会在氧化剂的作用下被氧化失去一个电子,变成阳离子自由基。然后两个阳离子自由基在体系中碰撞结合成含有两个阳离子自由基的双阳离子二聚吡咯,此时的双阳离子在体系中经过歧化作用生成一个呈电中性的二聚吡咯。电中性的二聚吡咯又会与体系中的阳离子自由基相互结合生成三聚吡咯的阳离子自由基,经过歧化作用而生成三聚体的聚吡咯,周而复始最终生成了长分子链的聚吡咯。电化学聚合是在电场作用下,采用电极电位作为聚合反应所需要的能量,经过一段时间的反应后会在电极表面沉淀一层聚合物从而得到共轭高分子膜。通过控制聚合条件如电解液种类、吡咯单体的浓度、溶剂、聚合电压、电流大小和温度等因素可制备具有各种不同形貌和性能的高聚物膜。进行电化学聚合时一般以铂、金、不锈钢、镍等惰性金属或导电玻璃、石墨和玻炭电极等作为电极使用。在使用电化学方法制备聚吡咯时的聚合机理与用化学氧化法制备时的机理相似,也可以用自由基机理来解释:首先,吡咯单体分子在电场的作用下,会在电极的表面失去电子而成为阳离子自由基,然后自由基会与另一单体相互结合而成为吡咯的二聚体。经过链增长步骤,最终得到聚吡咯大分子链。通常来说,使用化学氧化聚合法或电化学聚合法制备聚吡咯时,得到的产品都是黑色的固体,在使用化学氧化聚合法时制备的聚吡咯的产物一般是黑色粉末,而通过电化学聚合法则会在电极表面得到一层PPy薄膜。

    添加视频 | 添加图册相关影像

    开放分类 我来补充
    有机化学科学

    互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于www.baike.com。

    登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。

    互动百科用户登录注册
    此词条还可添加  信息模块

    WIKI热度

    1. 编辑次数:21次 历史版本
    2. 参与编辑人数:14
    3. 最近更新时间:2019-07-24 19:33:30