• 正在加载中...
  • 航天飞机

    航天飞机,又称为太空梭或太空穿梭机。是可重复使用的、往返于太空和地面之间的航天器,结合了飞机与航天器的性质。它既能代表运载火箭把人造卫星等航天器送入太空,也能像载人飞船那样在轨道上运行,还能像飞机那样在大气层中滑翔着陆。航天飞机为人类自由进出太空提供了很好的工具,它大大降低航天活动的费用,是航天史上的一个重要里程碑。1989年10月18日,美国“亚特兰蒂斯”号航天飞机向太空施放了“伽利略”号木星探测器。

    编辑摘要

    基本信息 编辑信息模块

    中文名: 航天飞机 英文名: Space Shuttle
    别名: 太空梭或太空穿梭机

    目录

    简介/航天飞机 编辑

    航天飞机 发射航天飞机 发射

    航天飞机,是一种新型的多功能航天器,是承运卫星等航天器材到达太空的重要工具。航天飞机集火箭,卫星和飞机的技术特点于一身,它能像火箭那样垂直发射进入空间轨道,又能像卫星那样在太空轨道飞行,还能像飞机那样再入大气层滑翔着陆,随着科学技术的发展,航天飞机已成为发射火箭卫星上天的重要载体。

    作为一种可重复使用的天地往返运输器,航天飞机是现代火箭飞机飞船三者结合的产物。它能像火箭一样垂直起飞,像飞船一样绕地球飞行,像飞机一样水平着陆。

    目前世界上航天飞机已经研制成功并投入运行的国家只有美国和前苏联,前苏联的航天飞机与美国的航天机基本上相似。美国航天器自1981年首次发射成功至今已成功完成了 100 多次空间飞行任务。

    航天飞机是人类有史以来建造的最复杂的机器,强大的运载能力使其成为独一无二的航天器。正是在航天飞机强大运载能力支持下,人类才有可能一步步修建国际空间站——这个世界上最大的太空轨道实验室,为人类未来登陆月球、奔向火星乃至更广阔的宇宙空间铺平了道路。

    航天飞机航天飞机

    航天飞机是世界上唯一的可重复使用的航天运载器。70-80年代,美国苏联法国日本等国相继开始研制航天飞机,但由于技术和资金等原因,到目前只有美国研制的航天飞机投入使用。航天飞机用途广泛,可进行空间交会、对接、停靠、空间科学实验、发射回收或检修卫星。它曾在空间捕获一颗未能进入同步轨道的国际通信卫星6号,进行修理后,又把它送入同步轨道。它还发射过并三次整修哈勃空间望远镜。航天飞机通常可乘7人,飞行时间一般在2周以下,最长可达28天。

    目前航天飞机的主要任务是向国际空间站运送宇航员和各种建设用部件和补养。美国原设想使用可多次重复使用的航天飞机可以节约花费。但结果全然不同,每架航天飞机的研制费非常高,最新的奋进号研制费达20亿美元,而且每次发射费用1亿多美元。因此至今只做了6架航天飞机,其中一架企业号为样机,另外有五架工作机,分别是哥伦比亚号挑战者号发现号、阿特兰蒂斯号和奋进号。航天飞机的可靠性还是非常高,自1986年1月挑战者号发射失败后一直到2002年4月为止已成功飞行过110次。2005年7月26日任务STS-114——哥伦比亚号解体意外后首次航天飞机返回太空任务。

    诞生历史/航天飞机 编辑

    1969年4月,美国宇航局提出建造一种可重复使用的航天运载工具的计划。1972年1月,美国正式把研制航天飞机空间运输系统列入计划,确定了航天飞机的设计方案,即由可回收重复使用的固体火箭助推器,不回收的两个外挂燃料贮箱和可多次使用的轨道器三个部分组成。经过5年时间,1977年2月研制出一架企业号航天飞机轨道器,由波音747飞机驮着进行了机载试验。1977年6月18日,首次载人用飞机背上天空试飞,参加试飞的是宇航员海斯(C·F·Haise)和富勒顿(G·Fullerton)两人。8月12日,载人在飞机上飞行试验圆满完成。又经过4年,第一架载人航天飞机终于出现在太空舞台,这是航天技术发展史上的又一个里程碑。
    虽然世界上也有许多国家都陆续进行过航天飞机的开发,但只有美国与前苏联实际成功发射并回收过这种交通工具。但由于苏联瓦解,相关的设备由哈萨克接收后,受限于没有足够经费维持运作使得整个太空计划停摆,因此全世界仅有美国的航天飞机机队可以实际使用并执行任务。


    另外,太空游客也是航天员。乘坐飞船或者航天飞机上天的人都是航天员,也就是说这些人在上天前都已经具备了航天员的要求。在飞天之前,这些普通人都是经过严格的身体检查和长时间的正规的航天员培训,经考核合格的.只是“太空游客”所承担的太空飞行任务不同,他是作为航天载荷任务专家参与飞行的,他与驾驶员、工程师的任务不同,所以对身体的要求相对低一些。航天飞机升空时的重量比火箭大许多,所以加速度较小,一般是3G(火箭是4-4.5G)。

    飞行原理/航天飞机 编辑

    航天飞机内部构造航天飞机内部构造
    航天飞机由轨道飞行器、固体火箭助推器和外挂贮箱3大部分组成,航天飞机起飞的动力源自两台巨大的集束式助推器和3台液体推进剂。在这些起飞动力装置中,中心部分是一个外形像一架三角翼滑翔机的轨道飞行器,它垂直发射,是航天飞机飞行时必不可少的配件,它在进入地球大气层后像普通飞机那样下滑着陆。

    航天飞机在起飞时,利用外挂贮箱内的液氢推进剂作为主发动机的动力,贮箱随着推进剂的使用完毕而投弃,另外,航天飞机还依据轨道飞行器顺利飞行;一般情况下,航天飞机的轨道飞行器可使用次数在100次以上,它有一个巨大的货仓,可以作为卫星及其他材料的存储点;大规模的太空作业时,还可将外挂贮箱带入轨道,作为航天站的核心部分。

    飞行高度在1000公里以下是航天飞机近地轨道的飞行高度,向国际空间站运送宇航员和各种建设用部件和补养是目前航天飞机的主要任务,因为航天飞机的运载能力比较大,所以航天飞机往往采用多级组合形式,在需要高轨道运行有效载荷的时候,还可以由航天飞机将其送上近地轨道后再从这个轨道发射,使其进入高轨道,以完成最终任务。

    组成部件/航天飞机 编辑

    航天飞机采用模块化设计,整个系统包括三大模块: 

    航天飞机航天飞机组成

    外部燃料箱 

    外表为铁锈颜色,主要由前部液氧箱、后部液氢箱以及连接前后两箱的箱间段组成。外部燃料箱负责为航天飞机的3台主发动机提供燃料。外部燃料箱是航天飞机三大模块中唯一不能重复使用的部分,发射后约8.5分钟,燃料耗尽,外部燃料箱便被坠入到大洋中。

    一对固体火箭助推器 

    这对火箭助推器中装有助推燃料,平行安装在外部燃料箱的两侧,为航天飞机垂直起飞和飞出大气层进入轨道,提供额外推力。在发射后的头两分钟内,与航天飞机的主发动机一同工作,到达一定高度后,与航天飞机分离,前锥段里降落伞系统启动,使其降落在大西洋上,可回收重复使用。 

    轨道器 

    即航天飞机,它是整个系统的核心部分。轨道器是整个系统中惟一可以载人的、真正在地球轨道上飞行的部件,它很像一架大型的三角翼飞机。它的全长37.24m,起落架放下时高17.27m;三角形后掠机翼的最大翼展23.97m;不带有效载荷时质量68t,飞行结束后,携带有效载荷着陆的轨道器质量可达87t 。它所经历的飞行过程及其环境比现代飞机要恶劣得多,它既要有适于在大气层中作高超音速、超音速、亚音速和水平着陆的气动外形,又要有承受再人大气层时高温气动加热的防热系统。因此,它是整个航天飞机系统中,设计最困难,结构最复杂,遇到的问题最多的部分。

    轨道器由前、中、尾三段机身组成,如图所示。前段结构可分为头锥和乘员舱两部分,头锥处于航天飞机的最前端,具有良好的气动外形和防热系统,前段的核心部分是处于正常气 压下的乘员舱。这个乘员舱又可分为三层:最上层是驾驶台,有4个座位,中层是生活舱,下层是仪器设备舱。乘员舱为航天员提供宽敞的空间,航天员在舱内可穿普通地面服装工作和生活。一般情况下舱内可容纳4~7人,紧急情况下也可容纳10人。

    航天飞机的中段主要是有效载荷舱。这是一个长18m ,直径4.5m,容积300m3的大型货舱,一次可携带质量达29t 多的有效载荷,舱内可以装载各种卫星、空间实验室、大型天文望远镜和各种深空探测器等。为了在轨道上施放所携带的有效载荷或回收轨道上运行的有效载荷,舱内设有一或二个自动操作的遥控机械手和电视装置。机械手是一根很细的长杆,在地面上它几乎不能承受自身的重量,但是在失重条件下的宇宙空间,却可以迅速而灵活地载卸10t多的有效载荷。航天飞机中段机身除了提供货舱结构之外,也是前、后段机身的承载结构。

    航天飞机的后段比较复杂,主要装有三台主发动机,尾段还装有两台轨道机动发动机和反 作用控制系统。在主发动机熄火后,轨道机动发动机为航天飞机提供进入轨道、进行变轨机动和对接机动飞行以及返回时脱离轨道所需要的推力。反作用控制系统用来保持航天飞机的飞行稳定和姿态变换。除了动力装置系统之外,尾段还有升降副翼、襟翼、垂直尾翼、方向舵和减速板等气动控制部件。

    外燃料箱


    外燃料箱,英文缩写ET,它是轨道器的“煤气罐”,是航天飞机必不可少的重要部件之一;外燃料箱装的是航天飞机主发动机使用的推进剂,也是航天飞机惟一不能重复使用的部件。

    在发射时,为附加装置----固体燃料推进器和轨道器提供结构支撑。升空大约8.5分钟后,推进剂耗尽,外燃料箱被抛开,与轨道器分离,使命完成。

    航天飞机外燃料箱
    外燃料箱有三个主要部件,它们分别是:氧燃料箱、氢燃料箱和燃料箱,氧燃料箱位于航天飞机的前部,氢燃料箱位于航天飞机的后不,而燃料箱位于航天飞机的中部;后者将两个推进燃料箱连在一起,仪表和燃料处理设备也在中间箱里,同时,它也为固体火箭助推器前端提供附着结构。

    外燃料箱的皮肤由执保护系统覆盖。热保护系统是一层2.5厘米(1英寸)厚的聚氨酯泡沫涂料,作用是将推进剂维持在一个可接受的温度,保护皮肤表面不会因为与大气摩擦产生的高温损坏,也将表面结冰的可能性降至最低。氢燃料箱的体积是氧燃料箱的2.5倍,但完全灌满燃料后,其重量只有后者的三分之一,这是因为液态氧的密度是液态氢的16倍。

    外燃料箱包括一个推进剂输出系统,将推进推输送到轨道器的发动机里;一个加压与通风系统,负责调控燃料箱的压力;环境调节系统,负责调控温度,补充中间燃料箱区域的大气;还有一个电子系统,负责分配电力、仪表信号,提供闪电保护。

    轨道飞行器

    轨道飞行器是航天飞机整个系统的灵魂,它与一架DC-9飞机的大小和重量差不多,包括加压乘员舱(通常可以乘载7名宇航员)、巨大的货舱以及安装在其尾部的三个主发动机

    位于机身的前部是驾驶舱、生活舱和实验操作站,机身中部的有效载荷舱是容纳各种货物的地方,而轨道器的主发动机和机动推进器则在机身尾部。

    航天飞机降落过程中的航天飞机轨道飞行器

    机身前部

    驾驶舱、生活舱和实验操作站在机身前部,这一部分有一个加压的乘员舱,并为机头部分、前起落架和前起落架轮舱和门提供支持。

    乘员舱

    它由三部分组成,分别是加压的工作间、生活间和储存间,乘员舱由驾驶舱、中舱/设备舱和一个气密过渡通道组成。乘员舱的空间为65.8立方米,在轨道器的前部。在乘员舱后舱壁外面的有效载荷舱里,可以安装一个对接舱和一个有接头的转移通道,以方面对接、乘员进入实验室和到舱外活动。两层的乘员舱前部有一个驾驶舱,机长的座位在驾驶舱的左边,飞行员的座位在右边。

    驾驶舱


    驾驶舱通常设计成驾驶员/副驾驶员都可操作模式,这样在任何一个座位上都可以驾驶轨道器,也可以执行单个人的紧急返回任务。每个座位上都有手动飞行控制器,包括旋转和转换驾驶杆、方向舵踏板和减速板控制器。驾驶舱里可以坐4个人。

    轨道显示器和控制器在驾驶舱/乘员舱的尾部,左边的轨道显示器和控制器是用来操纵轨道飞行器的,右边的轨道显示器和控制器是用来操纵有效载荷的。在驾驶舱里共有2020多个分散的显示器和控制器。

    中舱


    中舱有为4个乘员睡眠室准备的物资和储藏设施,中舱还存有氢氧化锂单人救生器呼吸袋和其它装置、废物管理系统、个人卫生间和工作桌/餐桌。

    机身尾部

    机身尾部包含左右轨道操纵系统、航天飞机主发动机、机身襟翼、垂直尾翼和轨道飞行器/外燃料箱的后部配件。前舱壁将机身尾部与中部隔开,舱壁的上层部分联接在垂直尾翼上,内部承受推力结构支持航天飞机的三个主发动机、低压涡轮泵和推进剂输送管。

    航天飞机主发动机


    航天飞机航天飞机主发动机

    航天飞机主发动机是航天飞机的重要部件,它与固体燃料火箭助推器联接在一起的三个主发动机在最初上升阶段为轨道飞行器提供推力,使之脱离地球引力。在发射后,主发动机继续运作8.5分钟左右,这段期间是航天飞机用动力推动飞行。

    在航天飞机加速时,主发动机会燃烧掉50万加仑的液态推进剂,这些推进剂由巨大的橙色外挂燃料箱提供,主发动机燃烧液氢和液氧,而液氢是世界上第二最冷的液体,温度在零下华氏423度(摄氏零下252.8度)。当固体燃料火箭被抛开后,主发动机提供的推力将航天飞机的速度在6分钟里从每小时4,828公里提高到每小时27,358公里以上并进入飞行轨道。

    发动机一开始排放的是氢和氧合成的水汽。主发动机在分阶段燃烧周期内使用高能推进剂产生推力,推进剂的一部分在双重预烧器里消耗掉,产生高压热气,推动涡轮泵。燃烧是在主燃烧室完成的,主发动机燃烧室里的温度可达到华氏6000度(摄氏3315.6度)。每个航天飞机的主发动机使用的液氧/液氢比例是6比1,产生水平推力179,097千克(375,000磅)、垂直推力213,188千克(470,000磅)。

    发动机产生的推力可在65%至109%的范围内调节,这样,点火发动和初始上升阶段可以有更大的推力,而在最后的上升阶段减少推力,将加速度限制在3g以下。在上升阶段,发动机的万向接头(平衡架)可提供倾斜、偏航和滚动控制。

    航天经费/航天飞机 编辑


    美国起初对航天飞机计划的预算为430亿美元(换算为2011年的美元价格),每次发射费用预计为5400万美元,但由于航天飞机系统过于复杂(机身超过250万个零件),技术和系统维护需要大量的人力物力,这一计划远远超出预算。截止2011年的统计显示,航天飞机计划共花费1960亿美元,其中每架航天飞机的造价约为120亿美元,单次发射的费用约为4亿5千万美元(超预算近十倍,而一次性使用的宇宙飞船造价也仅为2-3亿美元。

    2005年美国宇航局近30%的经费,约50亿美元,都花在航天飞机上,2006年这一数字下降为43亿美元,其中航天飞机的地面维护占了很大的比重[6]。2004至2006年间,因为哥伦比亚号事故,航天飞机仅仅发射了3次,但美国宇航局仍为此计划花费了130亿美元。

    中国方案/航天飞机 编辑

    中国在1988年提出过4种航天飞机方案和宇宙飞船方案,当年被誉为“五朵金花”,最后选择了神舟系列宇宙飞船。我国的航天飞机研制计划最早提出于1988年,构想起于发展天军的战略,最早将其归属于863计划子项目编号204的航天附属项目中,是一个由宇宙飞船到航天飞机的渐进构想。当时,美国航天飞机成功首飞取得了巨大的轰动,所以我国国内主导意见是上航天飞机项目,宇宙飞船当时根本排不上号。在整整争论了三年后,1992年中国载人航天计划工程正式制定,提出了研制和运行以空间站为核心的载人航天系统,而天地往返系统确定为宇宙飞船,即后来的神舟系列宇宙飞船。

    航天技术是“863计划”《高技术研究发展计划纲要》七大领域中的第二领域,主题项目是:大型运载火箭及天地往返运输系统、载人空间站系统及其应用。“863计划”出台后,航天领域成立了两个专家组,一是大型运载火箭及天地往返运输系统,代号863-204;二是载人空间站系统及其应用,代号863-205。1987年,在原国防科工委的组织下,组建了“863计划航天技术专家委员会”和主题项目专家组,对发展我国载人航天技术的总体方案和具体途径进行全面论证。
    “863—204”专家组在1987年4月发布《关于大型运载火箭及天地往返运输系统的概念研究和可行性论证》的招标通知,以招标方式选择在技术方面有优势的单位,按要求各自论证载人航天方案。

    在2个月的时间内,各竞标单位提出了11种技术方案。“863—204”专家组筛选出6种方案,要求他们在1988年6月底前,完成技术可行性论证报告,以便参加高层专家的评审。

    方案一:航天部五院508所提出的载人飞船方案

    方案二:航天部一院一部提出的天骄一号小型航天飞机方案。它与方案三的长城一号航天飞机接近,所不同的是轨道器不带主动力,返回时利用自身结构滑翔着陆。

    方案三:航天部上海航天局805所与航空部604所共同提出的长城一号航天飞机方案。它垂直起飞,水平降落,部分重复使用,轨道器带主动力可自主飞行。

    方案四:航天部北京11所提出的V-2两级火箭飞机的方案。它像火箭一样垂直起飞,如飞机一样水平着陆,以火箭发动机为动力,可完全重复使用。

    方案五:航空部601所提出的H-2空天飞机方案。它可以像飞机一样水平起飞和降落,使用吸气式涡喷组合发动机,可完全重复使用。

    方案六:航空部611所对法国正在研究的赫尔墨斯小型航天飞机的综合分析,论证方认为法国搞的航天飞机在政治、经济、技术背景与我国有相似之处,其总体技术与航天部一院一部提出的天骄一号小型航天飞机方案类似,是航天飞机诸方案中最省力、省时的方案。611所正在与国外开展航空技术方面的合作,可以一并引进国外的有关技术。

    在综合考虑了自身的技术基础和经济能力后,1990年5月,“863—2”专家委员会最终确定了“投资较小,风险也小,把握较大”的飞船方案,即利用我国现有的长征2E运载火箭发射一次性使用的宇宙飞船,作为突破我国载人航天的第一步;在2010年或稍后再建成载人空间站大系统。

    航天飞机大事记/航天飞机 编辑

    航天飞机发展历程

    1981年4月12日,第一架实用航天飞机“哥伦比亚”号首次升空,两天的飞行主要验证其安全发射和降落的能力,这开创了人类航天的一个新时代。

    1983年8月30日,“挑战者”号航天飞机首次实现黑夜发射,6天后又在黑夜降落,宇航员队伍中的布拉福德是第一位“登天”的黑人。

    1984年2月3日,“挑战者”号再次发射,在7天的飞行任务中宇航员首次进行了不系带的太空行走,此后宇航员“太空漫步”成为航天飞机任务中经常出现的画面。

    1984年10月5日,又是“挑战者”号,首次搭载了7名宇航员升空,其中女宇航员凯瑟琳·苏利文成为第一位太空行走的女性,从此航天飞机经常运送7名宇航员。

    1986年1月28日,“挑战者”号在升空73秒后爆炸,7名宇航员全部罹难,此后美宇航局暂停了航天飞机发射任务。

    1988年9月28日,“发现”号在航天飞机任务中止32个月后升空,5名宇航员释放了一颗卫星,并完成了几项科学实验,这标志着航天飞机项目再次走上正轨。

    1990年4月24日,“发现”号航天飞机将“哈勃”太空望远镜送上轨道,人类有了观察遥远宇宙的“火眼金睛”。

    1992年9月12日,“奋进”号升空,这架航天飞机成为宇航员马克·李和简·戴维斯的“婚礼特快”,这两位宇航员是第一对在太空缔结良缘的夫妇。

    1995年6月27日,“亚特兰蒂斯”号发射,它实现了航天飞机和俄罗斯的“和平”号轨道空间站首次对接,美国和俄罗斯宇航员在外太空互相“串门”,新闻评论说“冷战”已在地球之外结束。

    1996年11月19日,“哥伦比亚”号发射,共飞423小时53分钟,创造了航天飞机停留外太空时间最长的记录。

    1998年10月29日,“发现”号搭载着77岁的参议员约翰·格伦起飞。格伦是曾搭乘“水星”飞船升空的美国首名宇航员,这次他又成为最高龄的“太空人”。

    1999年7月23日,“哥伦比亚”号发射,这次指挥它的是艾琳·柯林斯,标志着女性首次成为航天飞机的机长。

    2003年2月1日,“哥伦比亚”号在返回地面过程中于空中解体,7名宇航员全部罹难。

    2005年8月9日,美国“发现”号航天飞机在 美国加利福尼亚州的爱德华兹空军基地安全降落,结束了长达14天的太空之旅。这是自“哥伦比亚”号航天飞机失事后,美国航天飞机首次顺利地重返太空,并且平安回家。

    2006年17日,发现号航天飞机在佛罗里达州肯尼迪航天中心成功着陆。此次发现号顺利完成国际空间站维修和建设任务,并为国际空间站送去一名宇航员。

    航天飞机的经典时刻

    1981年4月12日,第一架实用航天飞机“哥伦比亚”号首次升空,开创了人类航天的一个新时代。

    1983年8月30日,“挑战者”号航天飞机首次实现黑夜发射,6天后又在黑夜降落,宇航员队伍中的布拉福德是第一位“登天”的黑人。

    1984年2月3日,“挑战者”号再次发射,在7天的飞行任务中宇航员首次进行了不系带的太空行走。

    1984年10月5日,“挑战者”号首次搭载了7名宇航员升空,其中女宇航员凯瑟琳·苏利文成为第一位太空

    行走的女性。从此,航天飞机经常运送7名宇航员。

    1986年1月28日,“挑战者”号在升空73秒后爆炸,7名宇航员全部罹难。此后,美宇航局暂停了航天飞机

    发射任务。

    1992年9月12日,“奋进”号升空,成为宇航员马克·李和简·戴维斯的“婚礼特快”。这两位宇航员是

    第一对在太空喜结良缘的夫妇。[1]

    1995年6月27日,“亚特兰蒂斯”号发射,实现了与俄罗斯的“和平”号轨道空间站首次对接。

    1996年11月19日,“哥伦比亚”号发射,共飞行423小时53分钟,创造了航天飞机停留外太空时间最长的

    纪录。

    2003年2月1日,“哥伦比亚”号在返回地面过程中于空中解体,7名宇航员全部罹难。

    2005年7月26日,“发现”号升空,这是自“哥伦比亚”号空中灾难性解体以来美国航天飞机的首航。8月

    9日,“发现”号安全返回。

    退役飞机/航天飞机 编辑


    2010年初,NASA正式决定将日渐老化的航天飞机全部退役。按计划在2010年秋天退役之前它们仅剩5次飞行任务。也就是说,除非NASA需要多几个月的时间完成剩余的任务,或者奥巴马总统选择延长航天飞机项目的寿命来减小美国载人航天飞行能力的缝隙,否则航天飞机将在2010年秋季停飞。
    2010年2月,“奋进号”航天飞机升空,拉开了2010年航天飞机退役飞行的序幕,为空间站安装了“宁静”号节点舱和一个便于宇航员对地球、其他天体及航天器进行全景观测的观测台。

    3月,“发现”号正矗立在肯尼迪航天中心的39A发射架上,等待发射。太空任务这艘航天飞机将搭载一个多功能后勤舱进入空间站。这个后勤舱基本上就是一个大型储藏室,里面装的是用于空间站实验室的科学研究架。按照计划,宇航员将在此次任务中进行3次太空行走,完成更换氨水箱,取回空间站外部的日本实验舱以及更换陀螺仪等工作。

    5月,“亚特兰蒂斯”号航天飞机将执行一项为期12天的任务,向空间站运送集成货舱以及俄罗斯制造的迷你研究舱。迷你研究舱将安装在空间站曙光舱底部端口。此外,迷你研究舱也将搭载美国货物。

    此次任务中,宇航员将进行3次太空行走,在空间站外部安装备用零部件,其中包括六块备用电池、一个用于Ku波段天线的桁架总成以及为加拿大机械臂准备的零部件。散热器、气闸、欧洲机械臂、俄罗斯多功能实验舱等部件也将搭乘“亚特兰蒂斯”号进入空间站。

    7月,“奋进”号航天飞机将重返太空,执行一项为期10天的任务,向空间站运送一系列备用零件,其中包括两个S波段通信天线、一个高压气罐、为加拿大机械臂准备的额外零部件以及微流星体碎片防护盾。由于在空间站周围或附近飞行的太空垃圾数量增多,安装这种防护盾显得非常重要。

    9月,“发现”号将执行一次飞行任务,为期9天。此次任务中,“发现”号将向空间站运送4号快速后勤运输装置以及其它零部件。这将是航天飞机的第134次飞行同时也是第36次飞往空间站的任务。后勤运输装置有助于提高空间站的货物储存空间

    2011年2月“发现号”,载着6名机员由国际空间站返回地球,完成他的第39次飞行。

    “发现号”自1984年服役以来,一共在太空中逗留了365天,总飞行里程近2.3亿公里,相当于往返月球288次。

    功成身退的“发现号”几个月后,就会被送到华盛顿的博物馆公开展览,另两架航天飞机也将退役。

    据报道,航天飞机上的4名机组人员在此次为期12天的行程中将向国际空间站送去供给、备用零件以及科学实验仪器。“亚特兰蒂斯”号航天飞机在国际空间站的建设和运行上发挥了很大作用。

    2011年7月21日美国“亚特兰蒂斯”号航天飞机于美国东部时间21日晨5时57分(北京时间21日17时57分)在佛罗里达州肯尼迪航天中心安全着陆,结束其“谢幕之旅”,这寓意着美国30年航天飞机时代宣告终结。

    终结/航天飞机 编辑

    “阿特兰蒂斯”号航天飞机落地“阿特兰蒂斯”号航天飞机落地

     2011年7月8日,“阿特兰蒂斯”号从美国佛罗里达州肯尼迪航天中心升空,执行美国航天飞机项目第135次也是最后一次飞行。 

    美国“阿特兰蒂斯”号航天飞机于美国东部时间2011年7月21日晨5时57分(北京时间21日17时57分) 在佛罗里达州肯尼迪航天中心安全着陆,结束其“谢幕之旅”,这寓意着美国30年航天飞机时代宣告终结。

    列表/航天飞机 编辑

    美国

    美国是世界上第一个拥有与实际操作航天飞机的国家,也是机队阵容最庞大的国家。美国的航天飞机大多是以历史上有名的观测船作为命名,其建造过的航天飞机包括如下:

    阿特兰蒂斯号航天飞机(即将退役,2011年7月8日最后一次任务)

    挑战者号航天飞机- 发射过程中爆炸

    哥伦比亚号航天飞机- 返回地球进入大气时解体

    发现号航天飞机

    奋进号航天飞机

    前苏联

    暴风雪号航天飞机 - 暴风雪航天飞机计划是苏联时代为了与美国进行太空军备竞赛所发展的计划,在苏联解体后不久此计划也宣告正式终结,残存的设备归属苏联时代的航天中心所在

    英国一家公司研制新型航天飞机可进入外太空,4小时内到达地球的任何地方。该公司声称目前已排除所有技术性障碍英国一家公司研制新型航天飞机可进入外太空,4小时内到达地球的任何地方。该公司声称目前已排除所有技术性障碍

    地哈萨克共和国拥有。暴风雪计划中共有五架航天飞机实际上已开始建造,但是只有第一架的暴风雪号真正被完成并且顺利发射升空与回收,而包括二号机小鸟号在内的其他几架苏联航天飞机全都是以未完成的姿态停止建造。

    相关文献

    互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于www.baike.com。

    登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。

    互动百科用户登录注册
    此词条还可添加  信息模块

    WIKI热度

    1. 编辑次数:43次 历史版本
    2. 参与编辑人数:28
    3. 最近更新时间:2014-05-08 00:23:52

    扫码免费获得此书,
    新用户手机专享特权。

    互动百科

    扫码下载APP