• 正在加载中...
  • 银河系

    银河系(古称银河、天河、星河、天汉、银汉等),是太阳系所在的星系,(又称天河或天汉),属于棒旋星系,包括1000到4000亿颗恒星和大量的星团、星云,还有各种类型的星际气体和星际尘埃。它的直径约为10万光年,中心厚度约为1.2万光年,可见物质总质量是太阳质量的大约1400万亿倍。银河系具有巨大的盘面结构,有一个银心和四条旋臂(最新研究银河系只有2个旋臂,其中太阳所在的猎户座臂只是一个主旋臂的小分叉),旋臂相距4500光年。太阳位于银河一个支臂猎户臂上,至银河中心的距离大约是2.6万光年。而我们居住的地球则属于太阳系中的一个行星。2003年1月,英国科学家发现,银河系外围可能镶嵌着一个由数十亿颗恒星组成的巨大的环。2015年3月,科学家发现银河系体积比之前认为的要大50%。

    编辑摘要
    百科帮你涨姿势

    太阳位于一条叫做猎户臂的支臂上 距离银河系中心约2.64万光年

    普遍认为银河系在宇宙大爆炸后不久诞生 年龄不低于136±8亿岁

    大部分质量是暗物质 形成的暗银晕估计有6000亿至3兆个太阳质量

    科学 +
    银河系

    科学家指出,银河系中央的伽马射线爆发最可能是脉冲星的产物。 研究人员利用NASA费米伽马射线太空望远镜开展了此次观测。[详细]

    基本信息 编辑信息模块

    中文名: 银河系
    外文名: Galaxy;Galactic System 古 称: 银河、天河、天汉
    特 点: 旋涡星系 定 义: 地球和太阳所在的星系。
    应用学科: 天文学;恒星和银河系

    目录

    星系年龄/银河系 编辑

    推测方法

    根据已知长寿命放射性核的衰变时间(即半衰期),从某些放射性中子俘获元素的丰度数据人们可以测定银河系中最古老恒星的年龄,从而定出银河系的年龄,这种放射性年龄测定方法称为核纪年法。例如,钍的半衰期是140亿年左右。用当代最大的天文望远镜,加上高分辨率光谱仪,已经能够检测到恒星的钍,并作出相应的年龄估计。

    推测结论

    银河系银河系

    据多种方法测定,从大爆炸算起,宇宙的年龄在140亿年左右。假定从大爆炸到银河系形成相隔的时间为10亿年,那么上述由核纪年法测定的银河系年龄与宇宙年龄是相容的。

    依据欧洲南天天文台(ESO)的研究报告,估计银河系的年龄约为136亿岁,差不多与宇宙一样老。由许多天文学家所组成的团队在2004年使用甚大望远镜(VLT)的紫外线视觉矩阵光谱仪进行的研究,首度在球状星团NGC 6397的两颗恒星内发现了铍元素。这个发现让他们将第一代恒星与第二代恒星交替的时间往前推进2~3亿年,因而估计球状星团的年龄在134±8亿岁左右,因此银河系的年龄不会低于136±8亿岁。

    星系全景/银河系 编辑

    主要星座

    银河系银河系

    银河系在天空上的投影像一条流淌在天上闪闪发光的河流一样,所以古称银河或天河,一年四季都可以看到银河,只不过夏秋之交看到了银河最明亮壮观的部分。银河经过的主要星座有:天鹅座、天鹰座、狐狸座、天箭座、蛇夫座、盾牌座、人马座、天蝎座、天坛座、矩尺座、豺狼座、南三角座、圆规座、苍蝇座、南十字座、船帆座、船尾座、麒麟座、猎户座、金牛座、双子座、御夫座、英仙座、仙后座和蝎虎座。银河在天空中明暗不一,宽窄不等。最窄只有4°~5°,最宽约30°。对于北半球来说,夏季星空的重要标志,是从北偏东地平线向南方地平线延伸的光带——银河,以及由3颗亮星,即银河两岸的织女星、牛郎星和银河之中的天津四所构成的“夏季大三角”。夏季的银河由天蝎座东侧向北伸展,横贯天空,气势磅礴,极为壮美。但只能在没有灯光干扰的野外(极限可视星等5.5以上)才能欣赏到。冬季的那边银河很黯淡(在猎户座与大犬座),但在天空中可以看到明亮的猎户座,以及由天狼星、参宿四、南河三构成的明亮的“冬季大三角”。

    全天88星座

    北天拱极星座:小熊座、大熊座、仙王座、仙后座、天龙座

    北天星座:仙女座、英仙座、武仙座、蝎虎座、鹿豹座、狐狸座、御夫座、牧夫座、猎犬座、小狮座、后发座、北冕座、天猫座、天琴座、天鹅座、天箭座、海豚座、飞马座、三角座

    黄道十二星座:白羊座、金牛座、双子座、巨蟹座、狮子座、处女座、天秤座、天蝎座、人马座、摩羯座、宝瓶座、双鱼座

    赤道带星座:小马座、小犬座、天鹰座、蛇夫座、巨蛇座、长蛇座、六分仪座、麒麟座、猎户座、鲸鱼座

    南天星座:天坛座、天燕座、天鹤座、天鸽座、天兔座、天炉座、绘架座、唧筒座、雕具座、望远镜座、显微镜座、矩尺座、圆规座、时钟座、山案座、印第安座、飞鱼座、剑鱼座、苍蝇座、蝘蜓座、杜鹃座、乌鸦座、凤凰座、孔雀座、水蛇座、豺狼座、大犬座、南三角座、南十字架座、南鱼座、南极座、南冕座、船底座、船尾座、罗盘座、网罟座、船帆座、玉夫座、半人马座、波江座、盾牌座、巨爵座

    星系全图

    银河系银河系

    2009年12月5日美国发表了绘制的最新红外银河系全景图,该图像是由80万张斯皮策太空望远镜拍摄的图片拼凑而成,全长37米。

    伴邻星系/银河系 编辑

    伴星系

    银河系有两个伴星系:大麦哲伦星系和小麦哲伦星系(小麦哲伦星云)。与银河系相对的称之为河外星系。

    银河、仙女座星系和三角座星系是本星系群主要的星系,这个群总共约有50个星系,而本地群又是室女座超星系团的一份子。

    银河被一些本星系群中的矮星系环绕着,其中最大的是直径达21,000光年的大麦哲伦云,最小的是船底座矮星系、天龙座矮星系和狮子II矮星系,直径都只有500光年。其他环绕着银河系的还有小麦哲伦云,最靠近的是大犬座矮星系,然后是人马座矮椭圆星系、小熊座矮星系、御夫座矮星系、六分仪座矮星系、天炉座矮星系和狮子I矮星系。

    麦哲伦

    在2006年1月,研究人员的报告指出,过去发现银河的盘面有不明原因的倾斜,现今已经发现是环绕银河的大小麦哲伦云的扰动所造成的涟漪。是在她们穿过银河系的边缘时,导致了某些频率的震动所造成的。这两个星系的质量大约是银河的2%,被认为不足以影响到银河。但是加入了暗物质的考量,这两个星系的运动就足以对较大的银河造成影响。在加入暗物质之后的计算结果,对银河的影响增加了20倍,这个计算的结果是根据马萨诸塞州大学阿默斯特分校马丁·温伯格的电脑模型完成的。在他的模型中,暗物质的分布从银河的盘面一直分布到已知的所有层面中,

    文化传说

    中国

    “飞流直下三千尺,疑是银河落九天。”(李白),中国古代文化视银河为天河,把注意力扩大到河东和河西的牛郎织女两个星座,想象编造出牛郎织女爱情的故事。那么美好的爱情,中间偏偏出现个王母娘娘,从中作梗,女子们没有力量反抗,只好通过鹊桥相会和“乞巧”的方式,获得精神上的寄托和安慰,东方文化就这样委婉含蓄。唐朝顾况的《宫词》中便有一句“水晶帘卷近秋河”,这里的“秋河”说的就是银河。再如李商隐的《嫦娥》中有“长河渐落晓星沉”。

    外国

    古希腊人如中国先人一样把天上的这条光带描述为“河”:The night sky gave a big hint,in the form of a lovely pale band of light that cut across the heavens like a river(仰望夜空,有一条瑰丽的光带依稀可见,它宛如一条河,将整个苍穹分割为二)。因为天上的这条河环绕整个天球,在纪元前六世纪,希腊人最初称之为Galaxias Kyklos 或Kyklos Galaktikos (Milky Circle,奶色之环,通译“银环”)。后来接受了希腊文明的罗马人改称之为Via Lactea (Milky Way,奶色之路),现代西方语言,如英、法、德、俄,均译自拉丁文Via Lactea。顺便提及,与the Milky Way同义的Galaxy(首字母大写)后来作为天文学术语保留下来,其他星系叫做galaxies(首字母小写)。

    银河系银河系

    英语中称呼银河一般有两种说法,一是galaxy,这个词还可指“星系”,比较正式。另一个说法就是the Milky Way,这种说法来自一个希腊神话。

    英文milky way与 galaxy首次出现于1384年前后。前者是源自拉丁文Via Lactea 借义外来语,而Via Lactea译自希腊文Galaxias Kyklos,改环(Kyklos)为路(Via)。后者是源自希腊文galaxias的借形外来语,至1848年开始用作天文学术语。

    世界各地有许多创造天地的神话围绕着银河系发展出来。很特别的是,在希腊就有两个相似的希腊神话故事在解释银河是怎么来的。有些神话将银河和星座结合在一起,认为成群牛只的乳液将深蓝色的天空染白了。在东亚,人们相信在天空中群星间的雾状带是银色的河流,也就是我们所说的天河。

    Akashaganga是印度人给银河的名称,意思是天上的恒河。

    依据希腊神话,银河是赫拉在发现宙斯以欺骗的手法诱使他去喂食年幼的赫尔克里斯因而溅洒在天空中的奶汁。另一种说法则是赫耳墨斯偷偷的将赫尔克里斯带去奥林匹斯山,趁着赫拉沉睡时偷吸他的奶汁,而有一些奶汁被射入天空,于是形成了银河。

    希腊神话传说,宙斯(Zeus)是希腊众神庙里的主神,即神上之神,跟玉皇大帝有一比。宙斯的妻子就是他的妹妹赫拉(Hera),赫拉是司理妇女和婚嫁之神,是众女神之神,地位相当于王母娘娘了。赫拉的奶汁和唐僧肉具有相同的效力,谁吮吸了她的奶汁,便会长生不老。宙斯是个不安分的神,暗地里和有夫之妇阿尔克墨涅(Alcmene)私通,生下了赫拉克勒斯(Hercules)。宙斯希望赫拉克勒斯将来能长生不老,就偷偷地把赫拉克勒斯放在睡着的赫拉身旁,让赫拉克勒斯吮吸赫拉的奶汁,谁知赫拉克勒斯吮吸太猛,惊醒了赫拉,她发现吃奶的不是自己的儿子,便一把把孩子推开。可是她用力太猛,奶汁直喷到了天上,便成了Milk Way(奶路),见油画The Origin of the Milky Way(1575-1580),此画出自意大利文艺复兴时期著名画家Tintoretto之手。后来,西方人便把银河想象成赫拉的奶水,称之为the Milky Way。

    在芬兰神话中,银河被称为鸟的小径,因为它们注意到候鸟在向南方迁徙时,是靠着银河来指引的,它们也认为银河才是鸟真正的居所。现今,科学家已经证实了这项观测是正确的,候鸟确实在依靠银河来引导,在冬天才能到温暖的南方陆地居住。即使在现代,芬兰语中的银河依然使用Linnunrata这个字。

    在瑞典,银河系被认为是冬天之路,因为在斯堪的纳维亚地区,冬天的银河是一年中最容易被看见的。

    古代的亚美尼亚神话称银河系为麦秆贼之路,叙述有一位神祇在偷窃麦秆之后,企图用一辆木制的运货车逃离天堂,但在路途中掉落了一些麦秆。

    起源演化/银河系 编辑

    宇宙起源

    银河系银河系

    在宇宙中高速运行具有星系核的星系,当它追及到另一个具有星系核的星系时,如果两者的运行速度相近,就会相互吞噬,形成了一个更大的星系。倘若这两个星系的星系核相遇,就会相互绕转而形成一个质量更大的高速旋转的星系核。这个高速旋转的星系核就像一个巨大的发电机,从它的两极爆发出能量强大的粒子流向远方喷射。星系核的能量越大,喷射粒子流的流量也就越大,喷射得也就越遥远。我们把这样的星系核称作两极喷流星系核。星系核在喷射高能粒子流的时候,会消耗其自身的能量,然而,当它俘获了其它星团或者星系以后,就会增添能量。当星系核的能量发生由大到小的变化时,就会建造出两条粗大的喷流带。如果星系核的磁轴绕着另一条轴(这条轴称作星系核的自转轴)旋转,那么,喷流带的轨迹就会弯曲,而演变成旋涡星系的两条旋臂。 一般的,星系核的磁轴与自转轴之间的夹角(0~π/2)越大,所建造的星系盘面就会越扁;否则就会越厚。星系核的磁轴绕着自转轴的旋转速度越快,旋臂缠卷得就会越紧;否则,就会越松。旋涡星系的两条旋臂是恒星诞生的活跃区域。

    我们的银河系就是具有两条旋臂的一个旋涡星系。

    质量减小

    当Alis Deason重新校准测量银河系质量的仪器时,竟然发现银河系质量减小了。“我们发现银河系的质量只有一般所认为的一半。”Deason说。她是美国加利福尼亚大学圣克鲁兹分校的天文学家,在美国天文学会第221次会议上报告了她的测量结果。

    测量银河系的质量比较复杂,部分原因是其质量大多来源于无法看到的暗物质。科学家们通常会测量星系的旋转速率,并结合暗物质分布规律的理论得出结果。利用这个方法,哈佛—史密森天体物理中心的Mark Reid及其团队测量出了相当于太阳质量几万亿倍的银河系总质量,并于2009年发布。不过,Reid仍表示,“测量银河系的总质量非常复杂”,并且存在诸多不确定因素。

    Deason和她的同事采取了不同的方法。在现今发表在《皇家天文学会月报》上的研究中,他们首次搜寻银河系光晕——直径为10亿光年的光球——里距中心非常遥远的星体。Deason解释,这些星体的扩散速度可以揭示银河系的质量。

    结果显示,银河系的质量“仅仅”是太阳质量的5000亿到10000亿倍——比之前Reid的测量结果的一半还要小。Deason提醒,这一结果是基于她对银河系光晕的大小以及星体围绕星系中心运动的假设而得出的。不过,她认为这些假设都是有可信服的理论依据的。

    Reid表示,测量银河系的质量“对理解银河系是怎样形成的以及星系团在未来几十亿年的发展趋势是很重要的”。因为星系团之间有引力存在。“知道银河系总质量的最好办法是了解星系团完整的三维速度。”他说。

    现有的技术并不能提供这些信息,不过Deason希望更大望远镜的观测结果可以尽快证实她的结论。“我们需要更多距离银河系中心更远的星体。”她说。

    研究历史/银河系 编辑

    古代探索

    虽然从非常久远的古代,人们就认识了银河系。但是对银河系的真正认识还是从近代开始的。

    1750年,英国天文学家赖特(Wright Thomas)认为银河系是扁平的。1755年,德国康德和郎伯特(Lambert Johann heinrich)提出了恒星和银河之间组成一个巨大的天体系统。1785年,英国天文学家威廉·赫歇耳绘出了银河系的扁平形体,并认为太阳系位于银河的中心。

    1918年,美国天文学家沙普利(Harlow Shapley)经过4年的观测,提出太阳系应该位于银河系的边缘。1926年,瑞典天文学家林得布拉德(Lindblad Bertil)分析出银河系也在自转。

    近代研究

    十八世纪中叶人们已意识到,除行星、月球等太阳系天体外,满天星斗都是远方的“太阳”。赖特、康德和朗伯特最先认为,很可能是全部恒星集合 成了一个空间上有限的巨大系统。像太阳一样的恒星在银河系里是多之又多的!

    第一个通过观测研究恒星系统本原的是F.W.赫歇耳。他用自己磨制的反射望远镜,计数了若干天区内的恒星。1785年,他根据恒星计数的统计研究,绘制了一幅扁而 平、轮廓参差、太阳居其中心的银河系结构图。他用50 厘米和120厘米口径望远镜观测,发现望远镜贯穿本领增加时,观察到的暗星也增多,但是仍然看不到银河系的边缘。F.W.赫歇耳意识到,银河系远比他最初估计的为大。F.W.赫歇耳死后,其子J.F.赫歇耳继承父业,将恒星计数工作范围扩展到南半天。十九世纪中叶,开始测定恒星的距离,并编制全天星图。1906年,卡普坦为了重新研究恒星世界的结构,提出了“选择星区”计划,后 人称为“卡普坦选区”。他于1922年得出与F.W.赫歇耳的类似的模型,也是一个扁平系统,太阳居中,中心的恒星密集,边缘稀疏。沙普利在完全不同的基础上,探讨银河系的大小和形状。他利用1908~1912年勒维特发现的麦哲伦云中造父变星的周光关系,测定了当时已发现有造父变星的球状星团的距离。在假设没有明显星际消光的前提下,于1918年建立了银河系透镜形模型,太阳不在中心。到二十年代,沙普利模型已得到天文界公认。由于未计入星际消光效应,沙普利把银河系估计过大。到1930年,特朗普勒证实星际物质存在后,这一偏差才得到纠正。

    中在恒星内银河系物质约90%集。1905年,赫茨普龙发现恒星有巨星和矮星之分。1913年,赫罗图问世后,按照光谱型和光度两个参量,得知除主序星外,还有超巨星、巨星、亚巨星、亚矮星和白矮星五个分支。1944年,巴德通过仙女星系的观测,判明恒星可划分为 星族Ⅰ和星族Ⅱ两种不同的星族。星族Ⅰ是年轻而富金属的天体,分布在旋臂上,与星际物质成协。星族Ⅱ是年老而贫金属的天体,没有向银道面集聚的趋向。1957年,根据金属含量、年龄、空间分布和运动特征,进而将两个星族细分为中介星族Ⅰ、旋臂星族(极端星族Ⅰ)、盘星族、中介星族Ⅱ和晕星族(极端星族Ⅱ)。

    银河系银河系

    恒星成双、成群和成团是普遍现象。在太阳附近25 秒差距以内,以单星形式存在的恒星不到总数之半。迄今已观测到球状星团132个,银河星团1,000多个,还有为 数不少的星协。据统计推论,应当有18,000个银河星团和500个球状星团。二十世纪初,巴纳德用照相观测,发现了大量的亮星云和暗星云。1904年,恒星光谱中电离钙谱线的发现,揭示出星际物质的存在。随后的分光和偏振研究,证认出星云中的气体和尘埃成分。现今通过红外波段的探测发现暗星云密集区有正在形成的恒 星。射电天文学诞生后,利用中性氢21厘米谱线勾画出银河系旋涡结构。根据电离氢区的描绘, 发现太阳附近有三条旋臂:人马臂、猎户臂和英仙臂;太阳位于猎户臂的内侧。此外,在银心方向还发现了一条3千秒差距臂。旋臂间的距离约1.6千秒差距。1963年,用射电天文方法观测到星际分子OH,这是自从1937~1941年间,在光学波段证认出星际分子CH、CN和CH+以来的重大突破。到1979年底,发现的星际分子已超过50种。

    银河系的起源这一重大课题当前还了解得很差。这不仅要研究一般星系的起源和演化,还必须研究宇宙学。按大爆炸宇宙学假说,我们观测到的全部星系都是1010年前高密态原始物质因密度发生起伏,出现引力不稳定和不断膨胀,逐步形成原星系,并演化为包括银河系在内的星系团的。而稳恒态宇宙模型假说则认为,星系是在高密态的原星系核心区连续形成的。

    银河系演化的研究现今才有一些成就。关于太阳附近老年恒星空间运动的资料表明,在原银河星云的坍缩过程中,最早诞生的是晕星族,它们的年龄是100多亿年,化学成分是氢约占73%,氦约占27%。而大部分气体物质集聚为银盘,并随后形成盘星族。现今还从恒星的形成和演化、元素的丰度的变迁、银核的活动及其在演化中的地位等角度探讨银河系的整体演化。六十年代发展起来的密度波理论,很好地说明了银河系旋涡结构的整体结构及其长期的维持机制。研究年表

    1750年—英国天文学家赖特(Wright Thomas)认为银河系是扁平的。

    1755年—德国哲学家康德提出了恒星和银河之间可能会组成一个巨大的天体系统;随后的德国数学家郎伯特(Lambert Johann heinrich)也提出了类似的假设。

    1785年—英国天文学家威廉·赫歇耳用“数星星”的方法绘制了一张银河图,在赫歇耳的银河图里,银河系是偏平的,被群星环绕,其长度为7000光年,宽1400光年。我们的太阳处在银河系的中心,这是人类建立的第一个银河系模型,它虽然很不完善,但使人类的视野从太阳系扩展到银河系广袤的恒星世界中。

    1845年—罗斯勋爵发现第一个漩涡星系M51。

    1852年—美国天文学家史帝芬.亚历山大声称银河系是一个旋涡星系,却拿不出证据加以证明。

    1869年—英国天文学作家理查.普洛托克提出相同的见解,但一样无法证实。

    1900年—荷兰天文学作家科内利斯.伊斯顿公布银河系漩涡结构图,然而旋臂及银心都画错了。

    1913年—科内利斯.伊斯顿再度公布错误的银河系漩涡结构图。

    1917年,美国天文学家沙普利(Harlow Shapley)用威尔逊山天文台的2.5米反射望远镜研究当时已知的100个球状星团,通过观测其中的造父变星来确定这些球状星团的距离。他发现其中有1/3位于人马座内,其余的则基本上位于以人马座为中心的半个天球上。他认为球状星团分布的这种表面上的不称性,正是由于太阳不在银河系中心所造成的,提出太阳系应该位于银河系的边缘。

    1922~1924年哈勃发现,星云并非都在银河系内。哈勃在分析M31仙女座大星云一批造父变星的亮度以后断定,这些造父变星和它们所在的星云距离我们远达几十万光年,因而一定位于银河系外。这项于1924年公布的发现使天文学家不得不改变对宇宙的看法。

    1926年—瑞典天文学家林得·布拉德(Lindblad Bertil)分析出银河系也在自转。

    银河系银河系

    1927年,荷兰天文学家奥尔特定量地测出了银河系的较差自转,进一步证明太阳确实不在银河系中心。恒星围绕银心旋转就像行星围绕太阳一样,并且距银心近的恒星运动得快,距离远的运动得慢。他算出太阳绕银心的公转速度为每秒220 公里,绕银心一周要花2.5 亿年。简·奥尔特证实了银河系是个漩涡星系,而且各旋臂越缠越紧。他还发现银河系中心,气体云向外移动。

    1929年—荷兰天文学家巴特.博克计画使用恒星计数法探测银河系的结构,十多年后宣告失败。

    1931年—巴德于威尔逊山天文台工作,并开始发展星族的概念。

    巴德发现仙女座大星云中,OB型超巨星只出现于旋臂中,因此建议测量银河系中OB型恒星的距离,但是这类恒星大多远在一千光年之外,无法用视差法测距。

    1943年—威廉.摩根(William Morgan)与光谱学家飞利浦.基南共同发表一套完整的光谱图集来描述各种不同光谱型和光度级的恒星之光谱特征,称为MK(摩根—基南)分类系统。

    1947年—利用MK系统来描绘银河系的旋臂。

    1950年—用49个OB型单星及三个OB型星群的距离,无法显现出清楚的旋臂结构。同时受到巴德的启发改而观测描绘银河系中的HII区,并用位于其中的OB型星来定出距离。通过电波观测,发现银河系的星际空间存在着大量气体,尤其是中性氢,它们几乎遍布整个银河系,这些气体发射波长为21厘米的电波。当人们弄清楚了这些中性氢气云在银河系中的分布后,他们便推测了银河系的大致形状,认为那是一个旋窝星系。

    电离氢区(HII regions)和中性氢区(HI regions)以氢为主要成分的星际气体云,若星云附近有OB型炽热恒星,则中性氢会被恒星的紫外辐射电离,形成HII区,温度达到104K。中性氢原子从最低能态变为电离状态须经波长短于912埃的紫外线照射。此外,当星际云之间的密度非常低时,中性氢原子在宇宙线的作用下也会电离。电子和质子一旦分开,就不容易再复合,从而也会形成HII区。在距激发星10~100秒差距(视星云中氢原子的密度而定)以外,使氢电离的高能光子会迅速减少,HII区就过渡到HI区。事实上大部分气体云都处于中性氢状态,HI区的温度一般在100K以下。观测银河系旋臂的中性氢原子数密度约为每立方厘米1~10个,旋臂之间约为每立方厘米0.1个。估计中性氢的质量占银河系总质量的1.4~7%。由HII区过渡到HI区,氢的电离度下降得很快,过渡区的厚度取决于星云气体的密度,而同激发星的性质和HII区的半径无关。至于HII区的大小则取决于激发星的温度和星云气体的密度。观测HI区和HII区所用的方法不同。前者只能用无线电方法观测氢原子发出的中性氢21厘米谱线,而后者除可观测无线电波外,还可以观测可见光波段的发射线和吸收线。

    1951年—科学家首次发现银河系有3条旋臂。将HII区的位置画在银河系图上,揭示了两个旋臂,分别是猎户臂及英仙臂,并在同年美国天文学会年会上发表,证明了银河系属于漩涡星系型态。

    1964年—美籍华裔科学家林家翘与徐遐生提出旋涡星系螺旋臂的维持密度波理论,初步解释了旋臂的稳定性,他们建议螺旋臂只是螺旋密度波的显示。他们假设恒星在细长的椭圆轨道上并且原来的轨道方向是互有关联的,也就是说,椭圆以很平顺的方式随着与核心距离的增加逐渐改变了他们的方向。这就是图中所说明的,很清楚的观察到椭圆轨道在某些区域紧密结合在一起的”现象”就是螺旋臂。因此恒星并不是永远保持在我们现今所看见的位置,他们只是在轨道上移动时经过螺旋臂。

    二择一的另一个被推荐的假说是星系的运动造成恒星陷入波浪中,因为形成时最亮的恒星也会最快死亡,便会在波的后方形成黑暗的区域,因而使得波被看见。

    二十世纪七八十年代,人们探测银河系一氧化碳分子的分布,又发现了第四条旋臂,它跨越狐狸座和天鹅座。1976 年,两位法国天文学家绘制出这四条旋臂在银河系中的位置,分别是圆规座旋臂、盾牌座-半人马座旋臂、人马座旋臂和英仙座旋臂。

    1971年英国天文学家林登·贝尔和马丁·内斯分析了银河系中心区的红外观测和其他性质,指出银河系中心的能源应是一个黑洞。

    1982年—美国天文学家贾纳斯和艾德勒完成对银河系434 个银河星图的图表绘制,发表了每个星团的距离和年龄数字。他们发现,银河系并没有旋涡结构,而只是一小段一小段地零散旋臂,漩涡只是一种“幻影”,这里因为银河系各处产生的恒星总是沿银河系旋转方向形成一种“串珠”。而不断产生的新恒星连续地显现着涡旋的幻影。

    1989年—太阳离银心到底有多远?这个所谓的“银心距”,对于银河系来说,是个基本的和重要的参数。自1918年以后的70来年间,一直有人根据球状星团的空间分布等方式进行探讨。许多人设法运用不同的方式研究。科学家们得出的数值不相同,最小为22800光年,最大为27700光年。1989年得出的结果是24400光年,上下可能各有3000光年的误差。照这样说来,太阳和太阳系天体都在银河系中比较靠近中间的地方。

    2004年—天文学家使用甚大望远镜(VLT)的紫外线视觉矩阵光谱仪进行的研究,首度在球状星团NGC 6397的两颗恒星内发现了铍元素。这个发现让他们将第一代恒星与第二代恒星交替的时间往前推进了2至3亿年,因而估计球状星团的年龄在134±8亿岁,因此银河系的年龄不会低于136±8亿岁。

    银河系银河系

    2005年—科学家用斯皮策(史匹哲)红外太空望远镜对银河系中心进行了一次全景式扫描,他们分析了扫描得到的数据后认为,银河系的中心是一个棒状结构。天文学家说,这个棒状体长约2.7万光年,比早先的猜测长7000光年,它所指的方向相对于太阳和银心连线之间的夹角约为45度。这一研究成果证实了早先人们对银河系形状的猜想:银河系不是一个简单的旋涡星系,而是一个有棒状星核的SBc棒旋星系(旋臂宽松的棒旋星系),总质量大约是太阳质量的6,000亿至30,000亿倍。有大约1,000亿颗恒星。银河的盘面估计直径为100,000光年,太阳至银河中心的距离大约是26,000光年,盘面在中心向外凸起。

    2006年—银河系银晕的外面还有一个范围更大的 物质分布区——暗晕,那是现今科学家们十分关注的地方,因为暗晕中可能存在着大量的暗物质。

    2006年1月,科学家宣布说,他们已证实银河系发生了弯曲变形,而导致其变形的力量来自环绕其外围的暗物质激荡。科学家解释说,暗物质虽然看不见,但它们的质量可能是银河系中可见物质的20倍,所以对银河系中天体的影响是不可小视的。

    2008年—另外一个另人关注的问题是“人马座A*(Sagittarius A*)”:一个让人困惑多年的位于银心的射电发射源。天文学家一直怀疑那是存在于银河系中心的巨大黑洞,但始终没得到确凿的证实。

    2008年,科学家宣布说,他们通过观测证实银心中的确存在着黑洞。科学家花了16年时间在智利的欧洲南方天文台追踪围绕银心运行的28颗恒星,从而证实了黑洞的存在,因为黑洞影响着这些恒星的运行。探测表明,这个名为“人马座A*”的巨型黑洞,其质量是太阳的400万倍,距离地球大约2.7万光年。

    2008年—最新的研究表明,银河系只有两条主旋臂,这两条主旋臂就是英仙座旋臂和盾牌座-半人马座旋臂,它们都与银河系核球中心的恒星棒连接着。这一认识来自2008年6月3日公布的一幅由斯皮策(史匹哲)红外太空 望远镜拍摄的银河系照片,这是人类迄今为止拍摄到的最为详细也是最大的

    一幅银河系照片,它由80万张图片组合而成,全长达55米,分辨率比此前最为清晰的银河系照片高100倍。在这幅图片的帮助下,科学家对银河系进行了恒星计数,他们在计数后认为银河系只两条主要旋臂。在依据此项研究绘制的银河全图上,人们看到两条源于核球的主旋臂,太阳依然位于银河系接近边缘的地方,它的具体位置是猎户座旋臂的内侧,这是一条小旋臂,处于人马座臂和英仙座臂之间。人马臂和矩尺臂绝大部分是气体,只有少量恒星点缀其中。

    背景知识/银河系 编辑

    穿过空间

    一般而言,根据爱因斯坦的狭义相对论,任何物体通过空间时的绝对速度是没有意义的,因为在太空中没有合适的惯性参考系可以作为测量银河速度的依据(运动的速度,总是需要与另一个物体比较才能量度)。

    因为各向宇宙微波背景辐射非常的均匀,只有万分之几的起伏。所以就让乔治·斯穆特想到了一个方法,就是测量宇宙微波背景辐射有没有偶极异向性。

    在1977年, 美国劳伦斯伯克莱国立实验室的乔治·斯穆特等人,将微波探测器安装在U-2侦察机上面,确切地测到了宇宙微波背景辐射的偶极异向性,大小为 3.5±0.6 mK,换算后,太阳系在宇宙中的运动速度约为390±60 千米/秒,但这个速度,与太阳系绕行银河系核的速度220 千米/秒方向相反,这代表银河系核在宇宙中的速度,约为600千米/秒。

    有鉴于此,许多天文学家相信银河以600千米/秒的速度相对于邻近被观测到的星系在运动,大部分的估计值都在每秒130~1,000千米之间。如果银河的确以600千米/秒的速度在运动,我们每天就会移动5,184万千米,或是每年189 亿公里。相较于太阳系内,每年移动的距离是地球与冥王星最接近时距离的4.5倍。

    第四宇宙速度

    所谓第四宇宙速度,是指在地球上发射的物体摆脱银河系引力束缚,飞出银河系所需的最小初始速度,约为110-120km/s,这个数据是指在银河系内绝大部分地方所需要的航行速度。但如充分利用太阳系的线速度以及地球的线速度,最低航行速度可减小为82km/s。

    未来情况

    与银河系相似的星系与银河系相似的星系

    当前的观测认为仙女座星系(M31)正以每秒300公里的速度朝向银河系运动,在30-40亿年后可能会撞上银河系。但即使真的发生碰撞,太阳以及其他的恒星也不会互相碰撞,但是这两个星系可能会花上数十亿年的时间合并成椭圆星系。

    天文学家发现银河系“比之前想象的要大”据英国广播公司6日报道,由国际天文学家组成的研究小组发现,地球所在的银河系比原来以为的要大,运转的速度也更快。

    天文学家利用在夏威夷、加勒比海地区和美国东北部的天文望远镜观察得出结论,银河系正以每小时90万公里的速度转动,比之前估计的快大约百分之十。

    银河系的体积也比之前预计的大一半左右。

    科学家们指出,体积越大,与邻近星系发生灾难性撞击的可能性也增大。

    不过,即使发生也将是在二、三十亿年之后。

    美国哈佛-史密森天体物理学中心的研究员利用“超长基线阵列”(Very LongcenterArray)仪器来推论地球所在银河系的质量和速度。

    研究员表示,使用这个方法找出的数据更准确,比较以前的方式所需要的假定更小。

    研究员还说,银河系与仙女座星系(Andromeda Galaxy)的大小相当。

    仙女座星系、银河系和三角星系是地球所在的星系群中三个最大的星系。

    此前,科学家一直认为仙女座最大,银河系只是仙女座的“小妹妹”。

    研究员在美国加利福尼亚州第213届美国太空学会会议上发表有关研究结果。

    常用数据/银河系 编辑

    银河系银河系

    质量≈10E11太阳质量

    直径≈100千秒差距

    银心方向:α=17h42m.5,δ=-28°59′

    太阳距银心≈9千秒差距

    北银极:α=12h49m, δ=-27°2'

    太阳处银河系旋转速度≈250公里/秒

    太阳处银河系旋转周期≈220E6年

    相对于3K背景的运动速度≈600公里/秒

    (朝向α=10h,δ=-20°方向)

    互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于www.baike.com。

    登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。

    互动百科用户登录注册
    此词条还可添加  信息模块

    WIKI热度

    1. 编辑次数:54次 历史版本
    2. 参与编辑人数:37
    3. 最近更新时间:2016-09-08 14:04:06
    立即申请荣誉共建机构 申请可获得以下专属权利:

    精准流量

    独家入口

    品牌增值

    广告

    贡献光荣榜

    更多