dtw

动态时间归整算法
在孤立词语音识别中,最为简单有效的方法是采用DTW(Dynamic Time Warping,动态时间归整)算法,该算法基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,是语音识别中出现较早、较为经典的一种算法,用于孤立词识别。HMM算法在训练阶段需要提供大量的语音数据,通过反复计算才能得到模型参数,而DTW算法的训练中几乎不需要额外的计算。所以在孤立词语音识别中,DTW算法仍然得到广泛的应用。

算法原理

无论在训练和建立模板阶段还是在识别阶段,都先采用端点算法确定语音的起点和终点。以存入模板库的各个词条称为参考模板,一个参考模板可表示为R={R(1),R(2),……,R(m),……,R(M)},m为训练语音帧的时序标号,m=1为起点语音帧,m=M为终点语音帧,因此M为该模板所包含的语音帧总数,R(m)为第m帧的语音特征矢量。所要识别的一个输入词条语音称为测试模板,可表示为T={T(1),T(2),……,T(n),……,T(N)},n为测试语音帧的时序标号,n=1为起点语音帧,n=N为终点语音帧,因此N为该模板所包含的语音帧总数,T(n)为第n帧的语音特征矢量。参考模板与测试模板一般采用相同类型的特征矢量(如MFCC,LPC系数)、相同的帧长、相同的窗函数和相同的帧移。
假设测试和参考模板分别用T和R表示,为了比较它们之间的相似度,可以计算它们之间的距离 D[T,R],距离越小则相似度越高。为了计算这一失真距离,应从T和R中各个对应帧之间的距离算起。设n和m分别是T和R中任意选择的帧号,d[T(n),R(m)]表示这两帧特征矢量之间的距离。距离函数取决于实际采用的距离度量,在DTW算法中通常采用欧氏距离。
若N=M则可以直接计算,否则要考虑将T(n)和R(m)对齐。对齐可以采用线性扩张的方法,如果N<M可以将T线性映射为一个M帧的序列,再计算它与{R(1),R(2),……,R(M)}之间的距离。但是这样的计算没有考虑到语音中各个段在不同情况下的持续时间会产生或长或短的变化,因此识别效果不可能最佳。因此更多的是采用动态规划(DP)的方法。