色散关系

色散关系
色散关系(dispersion relation)是指物理学中从因果律出发(与其他 原理相结合)得出的积分关系式的统称。色散关系作为因果律的推论,主要思想可概括为:设外界对某一物理系统输入信号(或施加作用),作为反应系统产生输出信号(或次级作用)。只要此系统具有下述性质:①内部运动规律不随时间改变;②输入和输出按因果方式联系;③输出是输入的线性泛函,则可求出此线性泛函的傅里叶变换的解析性质,进而得到可测量间的积分关系式——色散关系。

概念说明

推导色散关系时只用到因果律和其他一些普遍原理,而无须对系统内部运动规律或相互作用项作具体的说明或假定。所得色散关系式中都是可直接与物理测量相联系的量。因此色散关系在物理学许多领域中获得广泛的应用。

理论诠释

对色散关系的研究,从讨论经典电磁理论中电介质的折射率随电磁波频率的变化开始。由经典电子论得知,介质中的电磁波由入射波和从各散射中心发出的散射波相干叠加而成。一个合理的假定是认为这样的物理系统具有上面的三个性质。这时因果律体现在要求入射波碰到散射中心以前,散射波振幅为零。从这点出发得出介质折射率作为频率的函数的解析性质,导出了克拉末-克朗尼格公式,即介质折射率的色散关系式。它将折射率的实部用其虚部(即介质对电磁波的吸收系数)对频率的积分关系式表出。对于绝缘介质,这关系式两边都可直接测量,曾经利用它研究了经典电子论中许多问题。后来M.盖耳-曼、M.戈德伯格等人进一步讨论了量子电动力学中的色散关系问题。