精细结构常数

物理学中的无量纲数之一
精细结构常数,是物理学中一个重要的无量纲数,常用希腊字母α表示。精细结构常数表示电子在第一玻尔轨道上的运动速度和真空中光速的比值,计算公式为α=e2/(4πε0cħ)(其中e是电子的电荷,ε0是真空介电常数,ħ是约化普朗克常数,c是真空中的光速)。
精细结构常数是一个数字,量纲为1(或说是无单位)1/α≈137(更近似为137.03599976)。

历史进程

早在1664年,牛顿就发现一束细小的太阳光在通过三棱镜后会分解成像彩虹那用的连续光带。牛顿把这种彩色的光带叫做光谱。到19世纪初,英国物理学家威廉·渥拉斯顿(William Wollaston)发现,太阳光的连续光谱带其实并不是真正连续的,而是带有许许许多多的暗线条。以后德国物理学家约瑟夫·冯·福隆霍弗(Josheph von Fraunhoffer)进一步精确记录了数百条这种暗线的位置。1859年德国物理学家古斯塔夫·罗伯特·克基霍夫(Gustav R. Kirchhoff)又发现,把某些物质放在火焰中灼烧时,火焰会呈现特定的颜色。如果把这种色光也用三棱镜进行分解,就会发现它的光谱仅由几条特定的亮线条组成,而这些亮线条的位置与太阳光谱中暗线条的位置完全重合。克基霍夫据此断定,这些光谱线的位置是组成物质的原子的基本性质。基于这一原理,他在1861与德国化学罗伯特·本生(Robert Bunsen)合作,第一次对太阳大气的化学组成进行了系统化的研究。这些光谱中暗线和亮线,被称为原子吸收光谱发射光谱。利用光谱知识来确定物质的化学组成的方法,也发展成了一门重要的学科——光谱分析学。
到19世纪下半叶,物理学家们精确地研究了各种元素的光谱,并积累了大量的光谱数据。1891年,麦克尔逊(Michelson)通过更精确的实验发现,原子光谱的每一条谱线,实际上是由两条或多条靠得很近的谱线组成的。这种细微的结构称为光谱线的精细结构。然而,当时的物理学理论无法解释光谱为什么是一条条分离的谱线,而不是连续的谱带,更不用说光谱的精细结构了。