-->
平面向量-快懂百科
平面向量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。是在向量知识体系中占有核心地位的定理,平面向量基本定理是平面向量正交分解及坐标表示的基础,坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭建了桥梁。另一方面,平面向量基本定理是共线向量基本定理由一维到二维的推广,揭示了平面向量的结构特征,将来还可以推广为空间向量基本定理。因此,平面向量基本定理在向量知识体系中起着承上启下的重要作用。[1] 发展历程
向量(矢量)这个术语作为现代数学-物理学中的一个重要概念,首先是由英国数学家哈密顿使用的。向量的名词虽来自哈密顿,但向量作为一条有向线段的思想却由来已久。向量理论的起源与发展主要有三条线索:物理学中的速度和力的平行四边形法则、位置几何、复数的几何表示。 物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。