纳维-斯托克斯方程

1827年纳维首先提出的方程式
纳维-斯托克斯方程是牛顿第二定律在不可压缩粘性流动量守恒的运动方程,简称N-S方程。
粘性流体的运动方程首先由纳维在1827年提出,只考虑了不可压缩流体的流动。泊松在1831年提出可压缩流体的运动方程。圣维南斯托克斯在1845年独立提出粘性系数为一常数的形式,都称为Navier-Stokes方程,简称N-S方程。三维空间中的N-S方程组光滑解的存在性问题被美国克雷数学研究所设定为七个千禧年大奖难题之一。

N-S方程定义

牛顿第二定律在不可压缩粘性流动中的表达式。简称N-S方程。此方程是法国力学家、工程师C.-L.-M.-H.纳维于1821年创立,经英国物理学家G.G.斯托克斯于1845年改进而确定的。它的矢量形式为:
在直角坐标中的分量形式为: