圆锥曲线论

古希腊阿波罗尼奥斯所著书籍
圆锥曲线论是古希腊的阿波罗尼奥斯的著作。圆锥曲线论写作风格与欧几里得等都是是先设立若干定义后证明。

《圆锥曲线论》简介

作者:【古希腊】阿波罗尼奥斯
在第1卷的前言中,阿波罗尼奥斯向欧德莫斯述说撰写的经过:“几何学家诺克拉底斯(Naucrates)来到亚历山大,鼓励我写出这本书.我赶在他乘船离开之前仓促完成交给他,根本没有仔细推敲.现在才有时间逐卷修订,并分批寄给你”
《圆锥曲线论》写作风格和欧几里得、阿基米德是一脉相承的.先设立若干定义,再由此依次证明各个命题.推理是十分严格的,有些性质在欧几里得几何原本》中已得到证明,便作为已知来使用,但原文并没有标明出自《原本》何处,译本为了便于参考,将出处补上.(比较pp.280—335中的希腊原文和英译文.)后人对此颇有微词.阿基米德的传记作者甚至说阿波罗尼奥斯将阿基米德未发表的关于圆锥曲线的成果据为己有.此说出自欧托基奥斯的记载,但他同时说这种看法是不正确的.帕波斯(Pappus)则指责阿波罗尼奥斯采用了许多前人(包括欧几里德)在这方面的工作,而从未归功于这些先驱者.当然,他在前人的基础上作出了巨大的推进,其卓越的贡献也是应该肯定的.《圆锥曲线论》是一部经典巨著,它可以说是代表了希腊几何的最高水平,自此以后,希腊几何便没有实质性的进步。直到17世纪的B.帕斯卡和R.笛卡儿才有新的突破。《圆锥曲线论》共8卷,前4卷的希腊文本和其次 3卷的阿拉伯文本保存了下来,最后一卷遗失。此书集前人之大成,且提出很多新的性质。他推广了梅内克缪斯(公元前4 世纪,最早系统研究圆锥曲线的希腊数学家)的方法,证明三种圆锥曲线都可以由同一个圆锥体截取而得,并给出抛物线、椭圆、双曲线、正焦弦等名称。书中已有坐标制思想。他以圆锥体底面直径作为横坐标,过顶点的垂线作为纵坐标,这给后世坐标几何的建立以很大的启发。《圆锥曲线论》8大卷,将圆锥曲线的性质网罗[dài]尽,几乎使后人没有插足的余地.直到17世纪的B.帕斯卡(Pascal)、R.笛卡儿(Descartes),才有实质性的推进.