递归函数是数论函数的一种,其定义域与值域都是自然数集,只是由于构作函数方法的不同而有别于其他的函数。最简单又最基本的函数有三个:零函数O(x)=0(其值恒为0),射影函数,后继函数S(x)=x+1,它们合称初始函数。要想由旧函数作出新函数,必须使用各种算子。 在数理逻辑和计算机科学中,递归函数或μ-递归函数是一类从自然数到自然数的函数,它是在某种直觉意义上是"可计算的"。事实上,在可计算性理论中证明了递归函数精确的是图灵机的可计算函数。 定理定义
数论函数的一种,其定义域与值域都是自然数集,只是由于构作函数方法的不同而有别于其他的函数。处处有定义的函数叫做全函数,未必处处有定义的函数叫做部分函数。最简单又最基本的函数有三个:零函数O(x)=0(其值恒为0);射影函数;后继函数S(x)=x+1。它们合称初始函数。要想由旧函数作出新函数,必须使用各种算子。 代入(又名复合或叠置)是最简单又最重要的造新函数的算子,其一般形状是:由一个m元函数ƒ与m个n元函数g1,g2,…,gm 造成新函数ƒ (g1(x1,x2,…,xn),g2(x1,x2,…,xn),…,gm(x1,x2,…,xn)),亦可记为ƒ(g1,g2,…,gm)(x1,x2,…,xn)。另一个造新函数的算子是原始递归式。具有n个参数u1,u2,…,un的原始递归式为: