微波受激发射放大

微波受激发射放大
高低两能态粒子布居数反转的原子(或分子、离子等)系统受微波辐射场激励时,受激态原子齐同作共振发射跃迁,产生的微波放大。简称微波激射放大或量子放大,英文缩写为 Maser。如果放大的能量能补偿系统的损耗,那么将产生振荡。为此建立的装置称为微波激射放大器或振荡器。

创始实验

原子系统自发的低度非相干受激发射,早为人们所知。在实验室得到完全相干的受激发射是物理学实验上的突破。1954年,C.H.汤斯和他的同实验者(中国学者王天眷参与了此项研究)成功地获得了氨分子微波激射放大和振荡,装置按理论预卜运转,遂命名为 "Maser"。苏联的Η.Γ.巴索夫和A.М.普罗霍罗夫也在差不多同时独立研制了同样的微波激射器。汤斯、巴索夫和普罗霍罗夫于1964年共同获得诺贝尔物理学奖
因碰撞和动态热平衡,在室温下高低两能态的气体分子数依玻耳兹曼分布律分布(见玻耳兹曼统计),此时低态分子数多于高态分子数,当加上与两能态间共振跃迁相应频率的辐射场时,只能观察到吸收线,若要产生发射,必须使高能态上的分子数多于低能态的,即实现布居数反转。氨分子束激射器实验布置如图1a所示。分子束系统密封在高真空包壳内,氨分子通过束源的一束细管,产生分子束,射入选态焦聚器,此器件由四条圆柱形高压电极组成,其截面如图1b所示。它的轴心和束轴平行,圆柱电压正负相间,柱的间隙中有不均匀电场存在,其强度随离轴心距离的增大而增高。氨3-3线的分子(带有电偶极矩)通过焦聚器的电场,场强越高,高能态分子的能量就越高,因此受到拉近电极轴心的焦聚力而会聚,低能态分子则受到相反的力而散失。分子束经焦聚器后,从一端圆孔注入圆柱形的微波谐振腔内,腔为
模,将谐振频率调到3-3线的共振跃迁频率即 23870MHz时,如受微弱场激励,就产生受激发射(激射)放大。谱线很窄,线宽仅为吸收线的十分之一。且噪声极小,仅有量子的散粒噪声。因放大能量来自量子作用,故称量子放大。如增加束强,量子能量超过腔内的损耗,则系统在无微波能量输入时,就能维持运转,即产生振荡,振荡后谱线频率纯度极高(相干性极高),准确度达
,这主要是由分子跃迁的稳定特性决定的。两能态分子的激射也能在甲醛(
)分子转动能态跃迁中实现,于 28975MHz中可分辨10~23kHz的超精细分裂。
微波受激发射放大