在核物理与核化学中,核壳层模型是一个利用泡利不相容原理的结构来描述的原子核的能量级别的一个模型。原子核壳模型是迈耶(M.G.Mayer)夫人和简森(J.H.D.Jensen)在1949年各自独立提出的。由于发现核壳层模型理论和对称性原理,因此于1963年颁发诺贝尔物理学奖。 核壳层模型部分是类似于原子的电子壳层描述原子中的电子的安排,当壳层填满时特别稳定,核壳层模型描述原子中次原子粒子的排布,当质子与中子填满某个核壳层,该核素更稳定。当在一个稳定的原子核加入核子(质子或中子)时,也有一定的结合能,但其量值明显小于前一个核子。发现幻数:2,8,20,28,50,82,126当质子或中子为幻数时有较高的结合能,这就是核壳层模型的起源。质子和中子的核壳层是相互独立的。因此,质子或中子可以只有其中一个为幻数,此时称为幻核,也可以两者皆是幻数,则为双幻核。由于在核轨域填充有一些变化,目前最大的幻数是126,并推测有184个中子,但只有114个质子,这在搜索所谓的稳定岛中扮演了一个重要的角色。目前已发现一些半幻数,特别是Z = 40时,核壳填充的各种元素,此外,16也可能是一个幻数。 正文
通过分析实验资料发现,原子核具有类似元素周期性的情况,含中子数或质子数为2、8、20、28、50、82以及中子数为126的原子核特别稳定,在自然界中的含量也比相邻的核素丰富。原子核的某些性质随中子(或质子)数的增加呈现的变化也在经过上述那些值后发生突变。上述这些数值,人们称之为幻数。幻数的存在表明,平均场的概念对原子核也是有意义的,可以把原子核里的核子看作是在由其他核子共同产生的某个单粒子平均场中作近乎独立的运动,并认为平均场所不能概括的核子之间的剩余相互作用是比较弱的,可以当作微扰来处理,这就是壳层模型的基本思想。