概述
圣彼得堡悖论是数学家丹尼尔·伯努利(Daniel Bernoulli)的表兄尼古拉·伯努利(Daniel Bernoulli)在1738提出的一个概率期望值悖论,它来自于一种掷币游戏,即圣彼得堡游戏(表1)。设定掷出正面或者反面为成功,游戏者如果第一次投掷成功,得奖金2元,游戏结束;第一次若不成功,继续投掷,第二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。如果第n次投掷成功,得奖金2n元,游戏结束。按照概率期望值的计算方法,将每一个可能结果的得奖值乘以该结果发生的概率即可得到该结果奖值的期望值。 基本介绍