卷积定理

函数傅里叶变换的乘积
卷积定理是傅立叶变换满足的一个重要性质。卷积定理指出,函数卷积的傅立叶变换是函数傅立叶变换的乘积。具体分为时域卷积定理和频域卷积定理,时域卷积定理即时域内的卷积对应频域内的乘积;频域卷积定理即频域内的卷积对应时域内的乘积,两者具有对偶关系。

基本介绍

f(x,y) * h(x,y)<=>F(u,v)H(u,v)
f(x,y)h(x,y)<=>[F(u,v) * H(u,v)]/2π (A * B 表示做A与B的卷积)
二个二维连续函数在空间域中的卷积可求其相应的二个傅立叶变换乘积的反变换而得。反之,在频域中的卷积可用的在空间域中乘积的傅立叶变换而得。