数学基础(Foundation of Mathematics)是研究整个数学的理论基础及其相关问题的一个专门学科,即研究数学的基础,回答“数学是什么?”,“数学的基础是什么?”,“数学是否和谐?”等等一些数学上的根本问题的学科。对于直觉主义、逻辑主义和形式主义的异同,可以追溯到近代哲学家康德对数学本质的思考。康德认为算术来自先验主体对时间纯形式的直观,几何则是对空间纯形式的直观。这实质上是一种由主观而客观的思路。康德的思想后来又在胡塞尔那里得到继承和发展。胡塞尔就是从考虑“数在哪里”的问题提出现象学还原方法的。 历史及发展
对于数学基础的关注和研究,可追溯至古代。但在较长的历史阶段中,只限于对单科数学分支基础的讨论。至于作为整个数学理论基础的探索,尤其是“数学基础”作为一门专门学科的形成和诞生,乃是20世纪初的事。当时也是由于多种因素和研究活动的汇合,尤其是在作为整个经典数学之理论基础的集合论中出现悖论之后,才把数学基础问题的研究推向高潮,并进一步促进了数学哲学的发展,直至最终成为20世纪数学领域中深入的研究活动之一。 关于几何基础的研究。欧几里得(Euclid)的《几何原本》一直被公认为是最早用严格的逻辑结构建立学科体系的典范。但其不足之处也一 直为历代学者所关心。直到19世纪末,德国数学家希尔伯特(Hilbert,D.)才第一次给出了一个完备的欧几里得几何公理系统,这就是希尔伯特《几何基础》一书的核心内容。关于欧几里得几何基础研究的另一个重要线索,来自关于第五公设问题的探讨,长达两千年之久对第五公设的所有试证全告失败,由此导致非欧几何的建立和引起人们对于几何公理系统相容性问题的注意。后来知道:只要假定实数系统是相容的,那么欧几里得几何公理系统和罗巴切夫斯基几何公理系统都是相容的。而实数系统究竟相容与否,最终还是要归结到作为整个经典数学理论基础的集合论系统相容与否。