垛积术

高阶等差级数求和的方法
垛积术在我国古代主要用于天文历法。垛积术也就是高阶等差级数求和。

简介

对于一般等差数列和等比数列,我国古代很早就有了初步的研究成果。
北宋大科学家沈括在《梦溪笔谈》中首创“隙积术”,开始研究某种物品(如酒坛、圆球、棋子等)按一定规律堆积起来求其总数问题,即高阶等差级数求和问题,并推算出长方台垛公式。南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,丰富和发展了沈括的隙积术成果,提出了一些新的垛积公式。沈括、杨辉等所讨论的级数与一般等差级数不同,前后两项之差并不相等,但是逐项差数之差或者高次差相等。对这类高阶等差级数的研究,在杨辉之后一般称为“垛积术” 。

发展历史