基本解释
等距同构是一种事物在事件间的时空轨迹上的移动方式,而这样做是不会影响原时的。例如,所有事件被延后了两小时,而这两小时中包括了两项事件 ,以及你从事件一到事件二的路径,那么你的计时器所量度出的,两事件间的时间间距会是一样的。又例如,所有事物被移到西边五公里外的地方,那么你所量度出的时间间距也不会改变。而这种移动的结果是不会影响棍子长度的。 如果我们无视重力效应的话,那么一共有十种移动方式:在时间上的平移,在三维空间中任一维上的平移,在三条空间轴上任一条的(定角)旋转,或三维任一方向上的直线性洛伦兹变换,因此是1 + 3 + 3 + 3 = 10。 如果将这种等距同构结合起来(即执行一个之后再执行另一个),那么所得的结果也会是等距同构(然而,这一般来说只限于上述十种基本移动之间的线性组合)。这些等距同构因此形成了一个群。也就是说,它们当中存在单位元(即不移动,停留在原先的地方)及逆元(将事物移动回原先的位置),同时亦遵守结合律。这种特定群的名字叫做“庞加莱群”。